
SmartSwarm 300 Series

User Manual

 SmartSwarm 300 Series:

3

CONTENTS

List of Tables .. 7

1. Introduction ... 10

1.1 Why Enrich Data? .. 11

1.2 Why Aggregate Data? .. 11

1.3 Why Filter Data? .. 11

1.4 Sampling Theory .. 11

2. Document Structure .. 12

3. Example Workflow ... 15

3.1 Connect Your Hardware .. 15

3.2 Configure Your Device’s Connectivity to SmartWorx Hub ... 15

3.3 Configure the Modbus Interface ... 18

3.4 Configure the MQTT interface ... 20

3.5 Build Your Slave Maps ... 21

3.5.1 Discover Your Slaves ... 22

3.5.2 Create/Import Your Slaves .. 23

3.5.3 Export Slave Maps .. 28

3.6 Configure Rules and Topics .. 28

3.7 Verify Your Data Flow .. 31

3.8 Optimize Your System .. 31

4. Connect Your Hardware .. 33

4.1 Mounting the device .. 33

4.1.1 Installing/Removing from a DIN Rail ... 33

 SmartSwarm 300 Series:

4

4.2 Power Connector PWR .. 34

4.3 Ethernet Port (ETH0 and ETH1) ... 34

4.4 Cellular Connection.. 36

4.4.1 Antenna Connectors ANT, DIV and GPS.. 36

4.4.2 SIM Card Reader ... 37

4.5 RS-232 RS-485 Serial Interface - Connection to Modbus Network .. 38

4.5.1 Wire RS-485 connection ... 38

4.5.2 RS-232 Connection ... 39

4.5.3 Wire RS-485 and RS-422 connection .. 40

4.6 MicroSD Card Reader ... 41

4.7 USB Port ... 41

4.8 I/O Port .. 41

4.9 LEDs ... 41

5. Configure Connectivity to SmartWorx Hub ... 42

5.1 Step 1 - Connect to Local Webserver ... 43

5.2 Step 2 - Configure the Cellular APN details ... 43

5.3 Step 3 - Verify the Secure Connection with SmartWorx Hub .. 43

5.4 Step 4 - Verify That Your Device is Available on SmartWorx Hub ... 43

5.5 Factory Defaults ... 44

6. SmartSwarm 351 on SmartWorx Hub.. 45

6.1 Device Management .. 45

6.2 The Modbus-to-MQTT application .. 46

7. Configure the Modbus Interface ... 47

8. Configure the MQTT interface .. 48

9. Slave Maps and Enrichment .. 53

9.1 Discover ... 56

 SmartSwarm 300 Series:

5

9.2 Create an Empty Slave Map ... 57

9.3 Import a Slave Map .. 58

9.4 Editing Slaves ... 58

9.4.1 Understanding Your Slave Editor .. 59

9.4.2 Meta Data ... 60

9.4.3 Registers ... 61

9.4.4 Data Types .. 68

9.4.5 Adding Registers ... 70

9.4.6 Editing Registers ... 70

9.4.7 Deleting Registers ... 72

10. Rules and Topics .. 73

10.1 Introduction ... 73

10.2 Events (WHEN) ... 75

10.2.1 Read .. 76

10.2.2 Change .. 77

10.2.3 Delta ... 80

10.2.4 High Threshold .. 82

10.2.5 Low Threshold .. 84

10.2.6 High Rate .. 86

10.2.7 Low Rate ... 89

10.2.8 Scheduled ... 91

10.2.9 Global Read ... 92

10.2.10 Global Change ... 92

10.3 Payloads (WHAT) ... 93

10.3.1 Payload Examples ... 94

10.4 Topics (HOW) ... 102

 SmartSwarm 300 Series:

6

10.4.1 Custom Topic Space .. 103

10.4.2 Default Topic Space .. 104

11. Verify your Data Flow .. 107

12. Other Documentation .. 109

13. Appendix 1 - Hardware Ratings ... 109

13.1 Environmental ... 109

13.2 Type Tests .. 110

13.3 Cellular Module ... 110

13.4 Other Technical Parameters .. 111

14. Appendix 2 - General Settings ... 112

14.1 Configurable Items... 112

14.1.1 Settings ... 112

14.1.2 DHCP ... 113

14.1.3 OpenVPN .. 114

14.1.4 NTP Client ... 117

14.2 Non-Configurable items ... 117

14.2.1 Firewall ... 117

15. Appendix 3 - Diagnostics and Troubleshooting ... 119

15.1 The Local Web Interface .. 119

15.1.1 Home .. 120

15.1.2 Settings ... 120

15.1.3 Troubleshooting .. 120

15.1.4 Hub Client ... 122

15.1.5 Cellular .. 122

15.1.6 Logs ... 123

15.1.7 Modbus ... 123

 SmartSwarm 300 Series:

7

15.1.8 Debug and Agents ... 124

15.1.9 TSED .. 126

16. Appendix 4 - Slave Map Formats ... 128

16.1 Excel ... 128

16.2 JSON ... 131

17. Appendix 5 - Background Information ... 133

17.1 Modbus Background .. 133

17.2 MQTT Background ... 136

18. Appendix 6 – Dashboards .. 139

18.1 Node-RED ... 139

Advantech B+B SmartWorx Technical Support ... 146

LIST OF TABLES

Table 1. Example Modbus Slave Datasheet for Discrete Inputs .. 25

Table 2. Example Excel sheet data derived from Slave Datasheet (Inputs) ... 25

Table 3. Example Modbus Slave Datasheet for Input Registers .. 26

Table 4. Example Excel sheet data derived from Slave Datasheet (Input Registers) ... 27

Table 5. Example Excel sheet Meta Data ... 27

Table 6. Power connector .. 34

Table 7. Ethernet Ports .. 35

Table 8. Ethernet Port Usage ... 36

Table 9. RS-485 pinout ... 39

Table 10. RS-232 pinout ... 40

 SmartSwarm 300 Series:

8

Table 11. LED indicators .. 42

Table 12. The Modbus to MQTT application ... 47

Table 13. Modbus Interface ... 48

Table 14. MQTT Interface .. 51

Table 15. MQTT Interface .. 52

Table 16. Slave Map options .. 55

Table 17. Editing Slave Maps ... 59

Table 18. Editing Slave Maps - Rules ... 60

Table 19. Meta Data tab .. 61

Table 20. Register Types .. 61

Table 21. Input Register and Holding Register editable fields ... 65

Table 22. Discrete Input and Coil editable fields ... 68

Table 23. Data Types and Field Values .. 69

Table 24. Rules and Topics fields ... 74

Table 25. Event Types .. 75

Table 26. Events and Data Types: cross-reference .. 76

Table 27. Read Event ... 76

Table 28. Change Event ... 77

Table 29. Delta Event ... 81

Table 30. High Threshold Event ... 82

Table 31. Low Threshold Event .. 84

Table 32. High Rate Event .. 86

Table 33. Low Rate Event .. 90

Table 34. Global Read Event .. 92

Table 35. Global Change Event .. 92

Table 36. Payload options.. 93

 SmartSwarm 300 Series:

9

Table 37. Event / Payload matrix ... 93

Table 38. The Default Topic ... 104

Table 39. Default Topic example ... 105

Table 40. Verify your Data Flow .. 108

Table 41. Other Documentation .. 109

Table 42. Environmental .. 110

Table 43 Type Tests ... 110

Table 44. Type Tests .. 110

Table 45. Cellular Module .. 111

Table 46. Technical Parameters ... 111

Table 47. OpenVPN fields .. 116

Table 48. Firewall rules .. 118

Table 49. Excel Sheet tabs ... 128

Table 50. Excel sheet, Address tab .. 129

Table 51. Supported Modbus commands .. 134

Table 52. Supported Data Types .. 135

Table 53. Examples for subscribing to different topics in a hierarchical name space .. 137

Table 54. Node Red fields for Gauge node .. 143

Table 55. Node Red fields for Chart node.. 144

 SmartSwarm 300 Series:

10

1. INTRODUCTION

SmartSwarm 351 is an IoT Gateway appliance powered by B+B SmartWorx SmartSwarm technology. It is intended
for use in applications where users need to pass data from legacy Modbus RTU installations into an IoT platform or
application, but who can’t tolerate any disruption to the Modbus system in order to achieve this.

Using the notion of protocol eavesdropping to non-intrusively extract base data from the messages being sent
between the existing master and slave devices in a Modbus network, it leverages the feature-rich data enrichment,
filtering and aggregation capabilities of the SmartSwarm software stack to produce event-driven, semantically-
searchable, contextualized information, which is passed to the enterprise using the widely-supported MQTT
protocol.

 SmartSwarm 300 Series:

11

1.1 WHY ENRICH DATA?

Modbus data is impossible to interpret without very detailed knowledge of the devices producing the data and the
sensors connected to them. Anyone looking at Modbus data can see that the value of unit 31, register 40075 is
2397 – but has no way to interpret this data without prior knowledge of its significance. This is not the way that IoT
systems operate. One of the core concepts of an IoT architecture is that systems can request information based
upon a semantic model – a user can ask for information about temperatures in the rooms of the buildings they
manage, and will receive responses in a form which is self-declaring, for example B+B/Ottawa/Conference
Room{temperature: 72 degF}. This conversion of raw, unintelligible register values into interpretable information is
a fundamental operation in the integration of legacy devices into an IoT architecture.

1.2 WHY AGGREGATE DATA?

Modbus is a poll-response protocol. The master device follows a scan pattern which constantly updates an internal
database with the most recently recovered data in a particular unit, whether that data has changed or not. Once
we start to convert this data into information that is to be sent over, for example, a cellular data link, it becomes
important to regulate to flow of data to that which has value. The fact that the temperature in a room is the same
as it was five seconds ago is of little value, and we can make significant savings in data transmission and upstream
processing costs if we send aggregated data instead -- for example, the max, min and mean temperature each
hour.

1.3 WHY FILTER DATA?

Aggregating data is fine, of course, but there are certain events that we would want to be informed of on an
urgent basis. Examples would include a temperature that has exceeded a threshold, has an excessive rate of
change, or has moved by more than a deadband from the last transmitted value. This is the purpose of filtering. A
series of event triggers may be configured and the recovered data compared against these triggers with any match
resulting in an immediate action.

1.4 SAMPLING THEORY

It is important to bear in mind that the SmartSwarm 351 is only eavesdropping on the Modbus network. It cannot
influence the Modbus Slaves, or the Modbus Master in any way. Effectively, the SmartSwarm device is two levels
removed from the actual process signals in which you may be interested. This is especially important if the original
signal is analog.

The following example shows a “fast” analog signal that has some high frequency components: The signal is first
digitized by a Modbus Slave, at a certain sampling rate, and the quantized values are saved in an Input Register:

This register is then polled by the Modbus Master, at another (slower) sampling rate, and the response values are
used by a SCADA system:

The SmartSwarm 351 eavesdrops on the communication between the Modbus Master and Slave.
It can only observe the same data that the Modbus Master observes. If the Slave sampling rate and/or the Master
sampling rate is not fast enough to capture an event of interest, then that event will be missed.

 SmartSwarm 300 Series:

12

2. DOCUMENT STRUCTURE

This document is organized in accordance with the following flow.

Connect your Hardware

Configure your device’s connectivity to

Configure the Modbus interface

Configure the MQTT interface

Build your Slave Maps

Configure Rules and Topics

Verify your Data Flow

Optimize your System

 SmartSwarm 300 Series:

13

 SmartSwarm 300 Series:

14

The next chapter walks through an example workflow. This workflow is intended to be an example of how to get
your Modbus data publishing to an MQTT server quickly, without getting stuck in the details.

The remaining chapters will provide the necessary details.

 SmartSwarm 300 Series:

15

3. EXAMPLE WORKFLOW

In this section we will walk through an example workflow.

3.1 CONNECT YOUR HARDWARE

First, ensure that your hardware is physically connected.

Connect your antennae to the ANT and DIV connectors.

Insert a valid and data-provisioned SIM card into SIM 1. In this example we will assume that your outbound WAN
connection will be using a cellular connection. If this is not the case, and your uplink is solely via Ethernet, then it is
not necessary to connect antennae or install a SIM.

In this example, we will connect to an RS-485 Modbus network (this will be the typical configuration).

Physically connect your device to your Modbus network, as per the instructions on the quick-start guide, and as
described in the hardware section of this manual.

3.2 CONFIGURE YOUR DEVICE’S CONNECTIVITY TO SMARTWORX HUB

Use an Ethernet cable to connect your local laptop/desktop computer to your SmartSwarm device’s ETH0 port.
The ETH0 port of the device has IP address 192.168.1.1

The ETH0 port of the device is a DHCP server, so it will automatically serve an IP Address in the 192.168.1.x range
to your laptop/desktop computer: please ensure your laptop/desktop computer is configured to accept an IP
address automatically from a DHCP server.

Open a web-browser, and browse to 192.168.1.1

Select “Settings”->”Cellular (WAN)”, and enter the appropriate APN and network authentication settings for your
SIM card. In our example, we only need to enter an APN. Click EXECUTE.

 SmartSwarm 300 Series:

16

That’s all you need to do:

The device will now attempt to (a) make a WAN connection using the cellular network; then (b) make a secure
connection to SmartWorx Hub (on hub.bb-smartworx.com).

When (a) is successful, the WAN LED will turn on (yellow).

When (b) is successful, the USR LED will turn on (yellow).

The time it takes for (a) to be successful depends on your cellular network, but you should expect it to be
successful within minutes.

If the WAN LED is not turning on you may have entered invalid APN or network credential information for that SIM
card.

Please verify that you are using a valid SIM card and valid cellular settings.

When the USR LED is on (yellow), your device has a secure connection to SmartWorx Hub.

The following graphic shows that the WAN and USR LEDs are both on (yellow), and the RS-485 Modbus network is
connected.

 SmartSwarm 300 Series:

17

Open a browser page, and login to SmartWorx Hub on https://hub.bb-smartworx.com.

In this example, we assume that (a) you have an account to login with SmartWorx Hub, and (b) you are using the
cloud instance of SmartWorx Hub to manage your devices.

https://hub.bb-smartworx.com/

 SmartSwarm 300 Series:

18

Go to the “Devices”->”Claim Device” screen to bring your new SmartSwarm Device into your Device farm.
Type in your Device’s Device-ID (this is written both on the Device itself and on the box that you took your Device
out of) and select ‘Check Device ID’ to check that your device is available to be claimed by you. Assuming that it is,
you may then select “Claim Device”.

Your Device is now available for you to manage.

By selecting the ‘Devices/View Devices’ screen we can see that the device is available, and that it is currently
Online.

3.3 CONFIGURE THE MODBUS INTERFACE

Select the Device (click the Device ID link).

Now you can navigate to the Modbus-to-MQTT application and modify the application settings.

 SmartSwarm 300 Series:

19

Now configure the Modbus Settings so that they match the actual Modbus configuration of your Modbus network.

Apply the changes.

 SmartSwarm 300 Series:

20

3.4 CONFIGURE THE MQTT INTERFACE

Select MQTT from the list on the left hand pane and configure your MQTT interface.

We assume that you already have an MQTT broker that you can publish to. In our example we know we have an
MQTT broker available at 52.51.11.241, using the default port 1883.

 SmartSwarm 300 Series:

21

In this example we are not configuring any security in the MQTT interface. We recommend that you use “no
security” only until you have verified your connection and data-flow.

If you do not apply transport layer security settings, your data will be published to the MQTT server
in plaintext.
If you chose not to apply security settings now, please remember to do so later.

Once you are confident that your MQTT connection settings are valid, we recommend that you enable TLS and
configure a trusted, secure connection between the SmartSwarm device and your MQTT broker.

Remember to Apply your changes.

3.5 BUILD YOUR SLAVE MAPS

There are two main ways for you to build your Slave Maps: “Discover” or “Create”.

Both ways are useful, for different reasons. You can safely mix both methods in building your Slave Maps.

 SmartSwarm 300 Series:

22

3.5.1 DISCOVER YOUR SLAVES

Using the “Discover” option, you can let the SmartSwarm device self-learn the Modbus slave network.
Actually, your SmartSwarm device has been self-learning already. Your device has been physically connected to
the Modbus network since the beginning of this workflow. The Modbus configuration settings were deployed to
the device in an earlier step.

The Device will continuously learn from the actual Modbus data traffic, even after the initial learning period.
As the SmartSwarm device is a passive sniffer device, the time it takes for it to learn all of the Modbus slaves and
registers is outside of the control of the device. It depends entirely upon how the Modbus Master is configured.
We recommend that you initially leave your device running on the Modbus network for a period of time - maybe
10 or 15 minutes. At this time the device will have learned from the Modbus traffic. It is likely that it won’t have
learned everything in this amount of time, but it should have learned enough to enable you to carry on to the
enrichment steps.

Now go to the “Decoder” screen, and click on “Sync Maps”.

Refresh your SmartWorx Hub screen to see the discovered devices.

 SmartSwarm 300 Series:

23

In our example, only one Slave device has been discovered on the Modbus network.

In this case the discovered slave is at address 1. We will refer to this slave as “Slave 1” later.

Although not shown in this example, you can now edit this slave, and enrich the discovered slave data.
We will show some enrichment editing of Slave 1 a little later.

Next we will use the “import” method to get more slave maps into the system.

3.5.2 CREATE/IMPORT YOUR SLAVES

Using the “Create” option you can import a pre-prepared, pre-enriched set of Slave data, in either Excel or JSON
format.

We provide a number of aids for you to use the “Create” option.

First, you can download templates directly from here using the “Download Templates” option. At the time of
writing we have templates in .xls, .xlsx, and .json formats.

Second, you can create a slave and enter all enrichment for it using the “New Map” option.

Third, you can import a pre-prepared, pre-enriched, set of slave data using the “Load Map” option. When
importing slave data you must use one of the template formats provided by “Download Templates”.

 SmartSwarm 300 Series:

24

In our example we are going to load a pre-prepared slave-map from a template file.

To create the pre-prepared slave-map we took the datasheet of a slave device (an Emerson Liebert nFinity UPS),
and we populated the Template accordingly.

Here’s an example from the Modbus “Inputs” section of the actual device Datasheet:

 SmartSwarm 300 Series:

25

Table 1. Example Modbus Slave Datasheet for Discrete Inputs

We derived the following “Inputs” Excel sheet information from this datasheet, using the provided Excel template.
:

Table 2. Example Excel sheet data derived from Slave Datasheet (Inputs)

 SmartSwarm 300 Series:

26

NOTE that the address field in our template is declared as the offset from the base address of the register type. In
our example the device uses the 10,xxx range for its Input Status registers. (Other devices may use 10x,xxx.) So the
first IS register (10,001) corresponds to offset 0. Hence the device register 10,003 becomes our IS register 2.
Here’s an example of the Modbus “Input Registers” section of the datasheet:

Table 3. Example Modbus Slave Datasheet for Input Registers

We derived the following “Input Registers” Excel sheet information from this Datasheet, using the provided Excel
Template:

 SmartSwarm 300 Series:

27

Table 4. Example Excel sheet data derived from Slave Datasheet (Input Registers)

Next, optionally fill in the “Meta” data in the Excel sheet:

Table 5. Example Excel sheet Meta Data

Now, we’re going to import this pre-prepared Excel file into SmartWorx Hub.

We click on “Load Map”, then browse to the prepared Excel file. Select the file, and the Slave Map will be
immediately loaded.

 SmartSwarm 300 Series:

28

Don’t forget to Apply Changes.

3.5.3 EXPORT SLAVE MAPS

Once you have Slave Maps on your system - whether you created them manually, imported them, or discovered
them and subsequently enriched them - you can then export them.

This is very useful if you have many Slave Devices of the same type. You can create (and enrich) one Slave, then
export it to a .json format file.

You can edit the file offline (for example, to change the Meta Data, and Slave Address), then re-import it as a new
slave.

All previously applied enrichment will be available immediately on your new slave.

When you use the export utility all of your existing slave maps will be exported into a single archive file (.zip),
which goes directly into the “downloads” folder defined by your browser.

3.6 CONFIGURE RULES AND TOPICS

Click on Edit to enrich a slave, and to apply Events, Rules and Topics.

We will now enrich the data in Slave 1.

First, add some Metadata enrichment. Remember to Save when you’re happy with the enrichment.

 SmartSwarm 300 Series:

29

In our example there were some Input Registers discovered on Slave 1 during the “discovery” stage.
Go to the Input Registers tab, and enrich the registers.

In our example we’re enriching the slave’s input register data from the slave’s datasheet (an Emerson power
monitoring UPS).

Don’t forget to “Save” as you go.

Now, we’re ready to apply some Rules and Topics. Select the Rules and Topics tab.

The first thing we notice is that the enrichment data we have previously provided has already been applied to this
panel.

 SmartSwarm 300 Series:

30

There’s a line entry in this table for every discovered register on this Slave (even for the non-enriched registers).
The MQTT Topic has taken custom values, which are derived from the Meta data. You may leave these as-is, or you
may override the custom-defaults and define an MQTT topic for every register-rule.

You define an event (“when” a matching data pattern occurs on the Modbus network) in the “Event” column.

You define the payload that will be published (“what” is published when an event occurs) in the “Payload” column.

You define the MQTT topic the payload will be published on (“how” the payload is published when an event
occurs) in the “MQTT Topic” and “Default Topic” columns.

In our example we have created only one Event.

We want to know when the Nominal Input Frequency data value changes by 1 percent.

When that change-event occurs, publish the default payload data - that is, publish the Nominal Input Frequency
value on this Input Register for this Slave Device.

 SmartSwarm 300 Series:

31

Publish using the defined MQTT Topic “Server_Room/Power_Monitor/Liebert”, but do not also publish on the
“Default Topic” (see chapter 10).

Save Rules next: This saves your enrichment and rules to the SmartWorx Hub database.
Push Rules now: This applies the entire enrichment, including the defined event rules, to the device.

Your device will now apply the Events rules you have enabled, and it will start filtering the data and publishing data
in accordance with the rules that you have defined.

In our example the device will publish the Nominal Input Frequency register value to the MQTT server at address
52.51.11.241, using the MQTT Topic “Server_Room/Power_Monitor/Liebert”, but only when the value of this
register has changed by 1% since the last time it was polled on the Modbus network.

3.7 VERIFY YOUR DATA FLOW

The checkpoints for your data flow are:

1. You have a good physical connection between the SmartSwarm device and your Modbus network.
2. A secure connection has been established between your SmartSwarm device and SmartWorx Hub.
3. You have correctly configured the Modbus interface on your SmartSwarm device to correspond with your

Modbus network.
a. And you have applied your settings to the Device.

4. You have correctly configured the MQTT interface on your SmartSwarm device so that your device can
establish a connection with a valid MQTT broker.

a. And you have applied your settings to the Device.
5. You have created an Event that will actually trigger, based on matching actual data-conditions on your

Modbus network to the Event rule you have created.
a. And you have saved your enrichment.
b. And you have pushed your enrichment to the Device.

When you are satisfied that you have verified all of these checkpoints, it’s a good time to go back over your setup
and apply some optimizations.

3.8 OPTIMIZE YOUR SYSTEM

Some suggestions for optimizing your system are:

● Revisit your MQTT configuration settings, and enable security.
You have many security options. You will need to read the detailed chapter in this manual regarding
MQTT configuration.
We recommend that you also read some generally available MQTT security documentation from the
OASIS pages (www.mqtt.org).
It is important that the MQTT broker you chose to use supports the level of security that you wish to
apply.

● Revisit your Slave Map enrichment pages.
You are free to enrich your slaves and slave-registers in any way you find most appropriate to your usage.
It’s easy to change and re-apply your enrichment settings at any time.
Feel free to prototype different enrichment scenarios until you find one that suits your need.

http://www.mqtt.org/

 SmartSwarm 300 Series:

32

We recommend that you choose appropriate MQTT topics for your Slave registers, which enable ease-of-
use for your solution domain. By defining your Topics carefully, you can enable ease-of-consumption of
the data.

In some cases, you will want to consume the data on dashboards.

See Appendix 6 in this manual for an example of how to create your own dashboards using a server-side
Node RED service.

● Revisit your Slave Map Rules
The data that will be published to your MQTT broker is entirely dependent on the rules that you create.
We recommend that you do not enable a Read Rule for every register. The IoT environment for
consuming data is not intended to be a real-time replica of your Modbus control network. Publishing
every read to every register is not only extremely data-intensive across the entire system, it will also have
real cost associated with it. We recommend that you do not enable a Read Rule for every register. The
IoT environment for consuming data is not intended to be a real-time replica of your Modbus control
network. Publishing every read to every register is not only extremely data-intensive across the entire
system, it will also have real cost associated with it (e.g. data usage on cellular networks).

We recommend that you do enable appropriate Event Rules for any interesting or non-normal conditions
that you want to keep track of, or be notified about.

We recommend that you do enable appropriate Schedule Rules for any data that you wish to monitor on
a regular basis.

Again, it’s best to prototype different scenarios until you find one that suits your need.

It’s very easy to change and modify rules at any time, and to re-apply them in run-time without any
impact to your system.

 SmartSwarm 300 Series:

33

4. CONNECT YOUR HARDWARE

4.1 MOUNTING THE DEVICE

The unit may be mounted in any orientation. It can be simply placed on a flat surface, or it can be DIN rail
mounted using the supplied CKD2 holder.

4.1.1 INSTALLING/REMOVING FROM A DIN RAIL

The CKD2 holder, which is used for mounting the gateway on a DIN rail, should be mounted such that the smaller
flange on the holder is at the top when the unit is mounted on a DIN rail.

Default orientation of the CKD2 holder

To insert into a DIN rail, hook the lower (longer) flange into the DIN rail then rotate the top of the unit towards the
DIN rail until it clicks into place. To remove from the DIN rail, lightly push the IoT gateway upwards until the top
part of the CKD2 holder clears the top of the DIN rail. The top of the gateway can then be pulled away from the
DIN rail, which will in turn release the lower DIN connection point.

 SmartSwarm 300 Series:

34

4.2 POWER CONNECTOR PWR

Panel socket 2-pin

Pin Ident Description

1 GND(-) Negative pole of DC supply voltage

2 VCC(+) Positive pole of DC supply voltage (+10 to +60 V DC)

Table 6. Power connector

The unit accepts the connection of power supplies in the range +10 V to +60 V DC. Protection against reverse
polarity connection is built into the device.

Circuit example:

4.3 ETHERNET PORT (ETH0 AND ETH1)

Panel socket RJ45.

 SmartSwarm 300 Series:

35

PIN Signal Mark Description Data Flow Direction

1 TXD+ Transmit Data – positive pole Input/Output

2 TXD- Transmit Data – negative pole Input/Output

3 RXD+ Receive Data – positive pole Input/Output

4 — — —

5 — — —

6 RXD- Receive Data – negative pole Input/Output

7 — — —

8 — — —

Table 7. Ethernet Ports

Ethernet cables plug directly into the sockets. Always use a cable with an operational locking tab to avoid
intermittent communications problems.

 The insulation strength is up to 1.5 kV.

By default, ETH0 is set up as a DHCP server and is intended for the connection of diagnostic devices. ETH1 is set up
as a DHCP client, and may be used as an uplink for MQTT data being sent from the device.

 SmartSwarm 300 Series:

36

Connector Purpose Default Setting

ETH0 LAN port (default)

Connect your laptop or PC to this
port to get a local web-server for
device configuration and
diagnostics.

DHCP Server

IP Address:
192.168.1.1

NetMask:
255.255.255.0

ETH1 WAN port (default)

Connect this port to your WAN to
allow the device to obtain access to
the remote device management
service, SmartWorx Hub, over
Ethernet.

DHCP Client

The device will automatically obtain
an IP address from your DHCP
server, if you have a DHCP server
provisioned to supply one.

Table 8. Ethernet Port Usage

If a connection exists via ETH1, it will take priority over a cellular connection for northbound data.

4.4 CELLULAR CONNECTION

If your device is cellular-enabled, you will need to attach the relevant antennae and install a data-enabled SIM card
before you can use cellular connections.

4.4.1 ANTENNA CONNECTORS ANT, DIV AND GPS

If cellular communications are required, main and diversity antennas must be connected to the IoT Gateway via
SMA connectors on the front panel. The ANT connector is used to connect the main antenna of the device. A
second, diversity antenna, should be connected to the second cellular antenna connector (DIV) in order to improve
the gateway radio performance at low signal strength, or in areas where the RF environment is constantly
changing. (For example, near a road.) The third connector (GPS) is intended for GPS antenna connection and is not
currently used by the SmartSwarm 351

The device cannot connect to cellular networks without an appropriate antenna connected to ANT

Antennae are connected by screwing to the SMA connector on the front panel of the IoT Gateway.

 SmartSwarm 300 Series:

37

4.4.2 SIM CARD READER

Two SIM card readers for 3 V and 1.8 V SIM cards are placed on the rear panel of the device. Only the first of these
(SIM1) is currently supported by SmartSwarm 351. In order to operate on a cellular network it is necessary to
insert an activated, data enabled SIM card with an unblocked PIN code.

4.4.2.1 INSERTING/REPLACING A SIM CARD:

 Before inserting or removing the SIM card disconnect the device from power supply

Using a plastic opening tool, or your fingernail, press the SIM card into its slot until you hear a click.

To remove a SIM card press the SIM into the unit until you hear a click. After the click, release the card and it will
pop out of its slot.

Remove the SIM card and push any other SIM card into the slot until it clicks in place.

 Only SIM1 is supported in the initial release of SmartSwarm 351

 SmartSwarm 300 Series:

38

4.5 RS-232 RS-485 SERIAL INTERFACE - CONNECTION TO MODBUS NETWORK

These interfaces are physically connected on five-pin and four-pin terminal block connectors on the front panel.
The insulation strength is up to 2.5 kV. Attention, connectors are not isolated from each other and share a
common ground pin. The RS-485 ground connection should be made to the RS-232 GND pin.

4.5.1 WIRE RS-485 CONNECTION

RS-485 connector (4 pin)

RS-485 – Pinout

Pin Signal Description Direction

1 Tx- Transmit - (Do not connect) Output

 SmartSwarm 300 Series:

39

2 Tx+ Transmit + (Do not connect) Output

3 Rx- Receive - Input

4 Rx+ Receive + Input

Table 9. RS-485 pinout

NOTE: this device will only operate in Passive (receive-only) mode. It is not possible to configure it as a Modbus
Master, or for it to transmit on the Modbus network.

The RS-485 port provides a transmitter and a receiver. If you connect the transmitter to your Modbus
network, you risk interfering with the Modbus communication should the transmitter ever become
enabled by software. On this device, the transmitter is not enabled. Nevertheless, we recommend
that you do not connect pins 1 and 2.

CONNECT ONLY TO THE RECEIVER, AS SHOWN ABOVE.

4.5.2 RS-232 CONNECTION

RS-232 connector (5 pin)

PIN Signal Direction

1 CTS Output

 SmartSwarm 300 Series:

40

2 RTS Input

3 GND —

4 RXD Input

5 TXD Output

Table 10. RS-232 pinout

In order to operate on RS-232 based Modbus RTU networks, it is necessary to arrange for the SmartSwarm 351 to
receive information from both the RS-232 Transmit and Receive signals, in order that it can monitor both the
Modbus commands and the corresponding replies.

RS-232 data taps, B+B part number 9PCDT (9 pin) or 25PCDT (25 pin) are available for this purpose. The following
description assumes the use of the 9 pin version.

The device should be inserted into the RS-232 communications line between the Modbus master and slave.
Switches 1 & 2 should both be ON in order to pass both Rx and Tx data. In addition, switch 3 should be ON and
switch 4 OFF. Connections should then be made between the data tap pin 5 and the SmartSwarm RS-232
connector pin 3, and the data tap pin 2 and the SmartSwarm RS-232 connector pin 4. No other connections are
necessary.

The following image shows the correct configuration of DIP switches:

4.5.3 WIRE RS-485 AND RS-422 CONNECTION

Please read Section 3.3.3.2 of the “Modbus Serial Line Protocol and Implementation Guide”
(Modbus_over_serial_line_V1_02.pdf), which covers “Compatibility between 4-Wire and 2-Wire cabling” (see
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf). The RS-485 interface of the SmartSwarm
351 is effectively a 2-wire interface. In order to connect a 4-wire system to the device, you have to short the
Transmit and Receive pairs together.

http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

 SmartSwarm 300 Series:

41

In some situations this is not an issue, but there are some risks with this approach.
● The SCADA master will see a repeat of its command, followed by the slave reply, and this

combination may be rejected as invalid depending upon the characteristics of the SCADA
master driver.

● Similarly, the Modbus slave will see its own reply and may try to interpret this as a new
command and subsequently fail to recognize a valid command being sent by the host.

For this reason, it is strongly recommended that if an alternative tap-in point exists which operates at
either RS-232 or 2-wire RS-485 levels, this should be used.

If there is no alternative to tapping into a 4-wire circuit, then the safest way is to use an RS-232 data tap as
outlined above, and connect an RS-232 to RS-422 (or 4-wire RS-485 as appropriate) converter on either side of the
data tap. Advantech B+B SmartWorx offers a range of such converters. Please determine the most suitable
combination for your application.

4.6 MICROSD CARD READER

The MicroSD card socket, located on the rear panel of the unit, is currently unused by SmartSwarm 351

4.7 USB PORT

The USB port, located on the front panel, is currently unused by SmartSwarm 351.

4.8 I/O PORT

The I/O port, located on the front panel, is currently unused by SmartSwarm 351.

4.9 LEDS

The following table describes the LED operation on the SmartSwarm device

LED Color State Description

PWR Green Off No power

On Device is booting

Blinking Device is in normal operating mode

Fast
Blinking

Device is updating firmware. Do not power off

USR Yellow Off The device does not have a working session established with
SmartWorx Hub

On The device has a working secure session established with
SmartWorx Hub

PoE Not
Used

Not Used Not Used

DAT Red Off There is no communication on the cellular interface at this moment

Blinking There is communication in progress on the cellular interface

 SmartSwarm 300 Series:

42

SIM Green Off Reset button pressed or the device is booting

On Ready for operation. SIM 1 is enabled

WAN Yellow Off There is no cellular connection between the
SmartSwarm device and the cellular service provider

On A cellular connection has been successfully established between the
SmartSwarm device and the cellular service provider

IN0 Green Off The default state

On Binary input no. 0 is active (user defined)

IN1 Green Off The default state

On Binary input no. 1 is active (user defined)

Out Yellow Off The default state

On Binary output is active (user defined)

ETH0

ETH1

Green On 10 Mb/s

Off 100 Mb/s

ETH0

ETH1

Yellow On The network cable is connected

Off Network cable is not connected

Blinking Data transmission in progress
Table 11. LED indicators

5. CONFIGURE CONNECTIVITY TO SMARTWORX HUB

All major configuration of the SmartSwarm 351 is performed using the SmartWorx Hub cloud based management
platform. If you do not already have a SmartWorx Hub account, please contact your local B+B representative to
arrange for one to be set up. You will need to provide the following information in order for an account to be set
up:

● An Administrator contact name and email address
● The Device ID of the SmartSwarm 351 devices you already have taken delivery of (from the SmartSwarm

351 product label on each device)
● The MAC ID of the first Ethernet port each device (from the SmartSwarm 351 product label on the

devices)

SmartWorx Hub is accessed via the primary uplink port on the SmartSwarm 351. This is ETH1 if it is
connected to a local LAN providing outbound (internet) access, or the cellular connection if no
outbound LAN connection exists.
The connection status to SmartWorx Hub is indicated by the LEDs on the front panel. The USR LED will
be solid ON (yellow) if a secure connection to SmartWorx Hub has been achieved.
Please refer to the ‘Verification’ section below for further details on how to confirm this connection
status.

If the Internet connection is to be via cellular connection, ensure that appropriate antennae and SIM cards are
inserted before moving on to the first step below.

 SmartSwarm 300 Series:

43

5.1 STEP 1 - CONNECT TO LOCAL WEBSERVER

Connect a local laptop or desktop PC to ETH0. Open a browser and navigate to 192.168.1.1. Note that if you have
another LAN connection (e.g. via Wi-Fi) you may need to disconnect this second session, depending upon your
network settings and the domain of the LAN.

5.2 STEP 2 - CONFIGURE THE CELLULAR APN DETAILS

Enter the APN name and optional credentials as required by your SIM card provider / network operator. Apply it.
The WAN LED will turn ON (yellow) when the cellular connection has been successfully established.

5.3 STEP 3 - VERIFY THE SECURE CONNECTION WITH SMARTWORX HUB

The USR LED will turn on (yellow) when the device successfully makes a secure connection with SmartWorx Hub
(https://hub.bb-smartworx.com).

5.4 STEP 4 - VERIFY THAT YOUR DEVICE IS AVAILABLE ON SMARTWORX HUB

In order to verify the installation, and to ensure that you have correctly claimed the device within your SmartWorx
Hub account, please confirm that the device is shown as “Online” in SmartWorx Hub (For further information on
SmartWorx Hub, please refer to the SmartWorx Hub user manual).

https://hub.bb-smartworx.com/

 SmartSwarm 300 Series:

44

If a configuration for the device has already been created in SmartWorx Hub it will be automatically downloaded to
the device during this first connection.

5.5 FACTORY DEFAULTS

If the unit is not connecting as expected it may be reset to Factory Defaults at any time by pressing the Reset

button on the back-panel of the device for more than 10 seconds.

 SmartSwarm 300 Series:

45

6. SMARTSWARM 351 ON SMARTWORX HUB

Once you have Claimed your Device on SmartWorx Hub you may edit and configure it.
If your device is currently offline, all changes you make are queued. All of your changes will be
immediately applied as soon as the device comes online.

6.1 DEVICE MANAGEMENT

Please refer to the SmartWorx Hub user manual for more detailed information on general Device Management.

Find the device that you wish to manage in the “View Devices” screen, and click on it to open the “Manage
Device” screen.

 SmartSwarm 300 Series:

46

From here you may select the name of the application (“Modbus-to-MQTT”) in order to configure the Modbus-to-
MQTT Application.

6.2 THE MODBUS-TO-MQTT APPLICATION

The settings for the Modbus-to-MQTT application are split into 3 functional areas:

Functional Area Description Reference

Modbus Configure the Modbus interface of the SmartSwarm 351.
This configuration must match the configuration of the
Modbus network you’re monitoring.

See chapter 7.

MQTT Configure the MQTT interface of the SmartSwarm 351. See chapter 8.

Decoder This section enables you to Build and Enrich the Slave
Maps that are of interest to you.
This section also enables you to define the Rules you wish
to create to publish data on the MQTT interface, and the
MQTT topics that you will publish that data on.

See chapter 9 for Building
and Enriching Slave Maps.

See chapter 10 for defining
Rules and Topics.

 SmartSwarm 300 Series:

47

Table 12. The Modbus to MQTT application

7. CONFIGURE THE MODBUS INTERFACE

When configuring the Modbus interface, please ensure that you match the Modbus Master configuration on the
Modbus network you are monitoring.

Setting Description

Port RS-232 or RS-485.
The SmartSwarm 351 can only ‘sniff’ on one of these physical ports at a time.

Baud Rate 1200 through 115200

Parity None, Even or Odd

Databits 8

Stopbits 1 or 2

 SmartSwarm 300 Series:

48

Response Timeout Specifies the maximum time interval, in seconds, in which a response to a command is
expected from a connected slave device. If the interval is set too short, valid replies may
be missed. If set too long, retries sent by the Master may be interpreted as a reply and
cause valid exchanges to be missed. This will typically be set to a slightly lower value than
the Modbus master timeout. (E.g. 1.5 seconds.)

Table 13. Modbus Interface

8. CONFIGURE THE MQTT INTERFACE

MQTT is an OASIS and IEC/ISO standard.

The configuration interface provided enables you to configure the MQTT Client that resides on the SmartSwarm
351. The MQTT Client will use this configuration to connect to, and to communicate with, an MQTT Broker. Once
connected, the SmartSwarm 351 will publish data to the MQTT Broker.

The data published will be in accordance with the Rules and Topics that you will define for your Modbus
environment: see chapters 9 and 10.

The MQTT Broker is a 3rd party service: Advantech B+B SmartWorx does not provide this service.
Any MQTT 3.1.1 compliant broker may be used.

For information on deploying MQTT in a secure manner we recommend that you refer to “MQTT and
the NIST Cybersecurity Framework” which is available on the OASIS website (http://docs.oasis-
open.org/mqtt/mqtt-nist-cybersecurity).

http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html

 SmartSwarm 300 Series:

49

Setting Description

Host Enter the IP address of the MQTT broker. This is the address that the SmartSwarm
351 will publish MQTT Topics to.

Port TCP/IP port used by the MQTT broker. The default port for MQTT is 1883
When TLS is enabled the default port is 8883.

Ensure that the port you use matches the port on the MQTT Broker.

 SmartSwarm 300 Series:

50

Username/Password Username and Password fields may be used to authenticate and authorize the client
when connecting.

These fields are optional: If you setup your MQTT broker to require them, then you
will require them here also.

The password is sent in plaintext if it isn’t encrypted or hashed by implementation, or
if TLS is not used.

We recommend that you use username and password together with a secure
transport (i.e. Enable TLS).

Alternatively, you may choose to use the Client Certificate method for
authentication. This is best if your broker supports it. In this case, no username and
password are needed.

Client ID Unique identifier, used by the broker to uniquely identify each client.
This field is optional, and may be left blank.

The broker uses it for identifying the client and the current state of the client. If you
don’t need a state to be held by the broker, in MQTT 3.1.1 it is possible to send an
empty Client ID. This results in a connection without any state. A condition is that
Clean Session is true, otherwise the connection will be rejected.

We recommend that you use a random number.

Timeout Connection timeout in seconds. That is, the number of seconds that the client will
persist in attempting to make an initial connection with the broker.

Retry Interval The number of seconds after a QoS=1 or QoS=2 message has been sent that the
publisher will wait before retrying when no response is received.

Keep Alive The Keep Alive is a time interval used by the client to ensure the connection with the
broker is kept open. The client sends a PING request to the broker as specified by this
time interval. The broker responds with PING Response and this mechanism will
allow both sides to determine if the other one is still alive and reachable.

Reliability This is a Boolean value that controls how many messages can be in-flight
simultaneously.

Setting Reliable to True means that a published message must be completed
(acknowledgements received) before another can be sent.

Setting this flag to false allows up to 10 messages to be in-flight. This can increase
overall throughput in some circumstances.

Clean Session True: The broker won’t store anything for the client and will also purge all
information from a previous persistent session. This is required to be True if there is
no Client ID used.

This is the recommended setting for SmartSwarm 351.

False: The broker will store all subscriptions for the client and also all missed
messages, when subscribing with Quality of Service (QoS) 1 or 2.

 SmartSwarm 300 Series:

51

Enable TLS Enable TLSv1.2 as the secure transport layer.
Security settings must match the broker settings.

Client Certificate Valid X.509 Certificate containing the client’s public key. This certificate will be sent
to the broker when the SSL/TLS session is established.

Client Private Key Valid Private key corresponding to the Client Certificate. This is not exchanged with
the broker or any third party: it is only used locally on the SmartSwarm 351 device.

When using a Client Certificate, this field is required.

Passphrase Optional passphrase for the private key.

Verify Server Cert If this box is ticked, when the SSL/TLS session is established, the SmartSwarm 351
client will attempt to verify that the broker’s certificate is trusted. The Server Root CA
Cert must be provided in the field below.
(For test purposes, it may be useful to disable this option. But it should be enabled
for secure applications).

Server Root CA Cert The Root CA cert used to sign the broker’s certificate.
If Verify Server Cert is enabled, this field is required.

Mutual Authentication Mutual authentication means that the broker will attempt to verify the client’s
certificate when the SSL/TLS session is established.
You must ensure that the Root CA cert used to create the client’s key-pair is on the
broker.

Table 14. MQTT Interface

Last Will and Testament

Setting Description

Topic Topic on which the LWT is published.
If left blank the default topic is [SwarmID]/[Serial Number]/[Status]

Any subscribing clients wishing to be notified when this SmartSwarm 351 goes online
and/or offline will subscribe to this topic.

Online Message The message the broker will send to any subscribing clients when this SmartSwarm 351
comes “online” (Successfully connects to the broker).

Offline Message The message the broker will send to any subscribing clients when this SmartSwarm 351
goes “offline” (Disconnects unexpectedly from the broker).

 SmartSwarm 300 Series:

52

QOS The Quality of Service level is an agreement between sender and receiver of a message
regarding the guarantees of delivering a message. There are 3 QoS levels in MQTT:

● At most once (0)
● At least once (1)
● Exactly once (2)

With QoS for MQTT, there are always two different parts of delivering a message:
publishing client to broker, and broker to subscribing client.

The QoS level for publishing client to broker depends on the QoS level the publishing client
sets for the particular message.

When the broker transfers a message to a subscribing client it uses the QoS of the
subscription made by the subscribing client.

That means that QoS guarantees can get downgraded for a particular receiving client if
subscribed with a lower QoS.

In the case of SmartSwarm 351, we only need to consider the QoS for the publishing client
to broker.

Retain This flag determines whether the message will be saved by the broker for the specified
topic as the last known good value.

New clients that subscribe to that topic will receive the last retained message on that topic
instantly after subscribing.

Table 15. MQTT Interface

These settings are the general MQTT connection settings.
For each individual Rule and Topic that has an MQTT Publish associated with it, it is possible to specify
the QoS, Retain, Topic and Payload for that individual Publish. This is configured within the “Rules and
Topics” section..

Last Will and Testament messages are sent by the broker, to subscribing clients, when any of the
following cases occur.

 An I/O error or network failure is detected by the broker;

 The client fails to communicate within the Keep Alive time;

 The client closes the network connection without sending a DISCONNECT packet first;

 The server closes the network connection because of a protocol error

 SmartSwarm 300 Series:

53

9. SLAVE MAPS AND ENRICHMENT

If you have some knowledge of the Modbus network that is being sniffed, you can “enrich” the Modbus data by
telling the SmartSwarm device how to interpret these addresses and substitute some more meaningful strings.

There are two fundamentally different ways to enter this enrichment information:

● Discover:
o Allow the device to automatically learn the network and the memory maps of the various slaves

and present this information to you.
o Then edit this information with any extra knowledge that you have.

● Create or Import a Slave Map:
o Use your prior knowledge of the Modbus network and the slaves to pre-configure the device. This

can be done in advance of connecting the device to a network.

It is possible to mix these two approaches in whatever way makes most sense for your application. Here, we will
present one example of each.

Discover Create or Import

How do you want build the

 Modbus Network?

Discover Create an empty
slave Map

Import a slave Map
you have created

Go to “Discover”
section

Go to “Create an
Empty Slave Map”

section

Go to “Import a
Slave Map” section

 SmartSwarm 300 Series:

54

The “Decoder” interface screen displays all the Modbus Slaves currently known by SmartWorx Hub for this device.

When you first use SmartWorx Hub to enrich your new SmartSwarm device the list of Slaves will be empty.

 SmartSwarm 300 Series:

55

Option Method Description

Export Maps Export your current maps.
All of your existing Slave Maps will be exported to a .zip archive
file.
All maps are exported in .json format.
There is one map file for each Slave.
The .zip archive will be stored into your Browser’s download
directory.

Download Templates Download a .zip archive file of map templates in both .json and
Excel formats.
These templates can be used to create slave map files that can
then be loaded using “Load Map”.

Sync Maps Discover When the SmartSwarm 351 device is connected to a live
Modbus fieldbus it immediately begins to “Discover” the bus. It
will automatically build up a Map of all Slaves and Registers that
it sees.

You may upload this automatically discovered Modbus
information from the device to SmartWorx Hub using Sync
Maps. See section “Import a Slave Map”.

New Map Create You may already know the slave address(es) you wish to enrich
for rules-and-publish purposes.

Use this option to build only the Modbus slaves and registers
that you are interested in. See section “Create an Empty Slave
Map”.

Load Map Import You may import your entire Modbus information using the Load
Map option. You may import Maps in either .json or Excel
formats.
See section “Import a Slave Map”.

Table 16. Slave Map options

Once you have some Slave maps in place, you may Edit or Delete (-) them.

 SmartSwarm 300 Series:

56

9.1 DISCOVER

In Discover Mode you simply wait for your device to learn the network. The time you need to wait depends on the
configuration of the Modbus Master.

After waiting for an appropriate period of time, click on “Sync Maps”. This will pull the learned information into
SmartWorx Hub.

Clicking on Sync Maps tells the device to upload its discovered maps. This should be done after the application has
discovered all slaves on the Modbus network and before enrichment data has been entered.

Any maps on the device which have already been enriched will retain their data. After syncing, the Slaves grid will
be populated with the discovered maps. As no enrichment data is available, most fields will appear as undefined.

 SmartSwarm 300 Series:

57

You will now be able to edit these maps to add enrichment data and events. See Chapters 9.4, 10 on how to do
this.

9.2 CREATE AN EMPTY SLAVE MAP

Clicking on New Map allows you to enter an empty slave map. Enter a slave number between 1 and 247 and click
OK. The map is then displayed on the Decoder screen and may now be edited.

Entering a Slave number which already exists on the system will overwrite the existing map

 SmartSwarm 300 Series:

58

9.3 IMPORT A SLAVE MAP

You may import a complete set of pre-prepared Slave and Register information, complete with full enrichment.

If you wish to do this we recommend that you begin by exporting as much of the mapping information as you can
from your Modbus control system.

You will need to manipulate your exported data into one of the formats required by the SmartWorx Hub import
utility.

Click on Load Map to import existing slave maps. You can import multiple maps using the Ctrl and Shift keys when
selecting maps to be imported. Supported formats are .json, .xls and .xlsx. Please refer to Appendix 2 for more
information.

Once imported, you can edit the data in-line on SmartWorx Hub, as described in section “Editing Slaves”.

9.4 EDITING SLAVES

While editing Slaves, SmartWorx Hub will be in Editor Mode.

 SmartSwarm 300 Series:

59

9.4.1 UNDERSTANDING YOUR SLAVE EDITOR

Editor Button Description

Save Save all current changes to the SmartWorx Hub Database.
Use this button when you want to save your current edits, but you don’t wish to push
your edits to the device just yet.
If you get interrupted, or SmartWorx Hub times out and logs you off, you will be able to
resume editing from where you last Saved.

Push to Device Push the current state of configuration for everything in the Slave Editor tabs to the
SmartSwarm device.
Use this button when you want to deploy your edits, so that they take effect on the
SmartSwarm device.

Exit Editor Exit Slave Editor mode.
Note that when you exit the Editor you will be prompted to Stay on page if you have
unsaved changes.
Please remember to Save your changes as you make them, and to Push them as often as
necessary

Table 17. Editing Slave Maps

When you exit the Editor you will be prompted to Stay or Leave page if you have unsaved changes. If
you Choose Leave, your changes will not be saved.

Context Button Tab Description

 Inputs (1x)
Coils (0x)
Input Registers (3x)
Holding Registers (4x)
Rules and Topics

Delete a row from the panel context.

 Inputs (1x)
Coils (0x)
Input Registers (3x)

Add a row to the panel context.

 SmartSwarm 300 Series:

60

Holding Registers (4x)
Rules and Topics

Save Rules Rules and Topics Save all current rules/events changes to the
SmartWorx Hub database.

Use this button while you’re still editing your Rules
and Topics.

Push Rules Rules and Topics Push all existing (saved) rules/events to the
SmartSwarm device, so that they can take effect.

Table 18. Editing Slave Maps - Rules

Save does not write anything to the SmartSwarm device. You must push your changes to the device to
apply the changes.

9.4.2 META DATA

The Meta tab allows you to add information about the Modbus slave. Some of this information is then
automatically used (by default) to define the MQTT topic on which data will be published.

If Meta Data is populated the custom “MQTT Topic” will be composed of the text from the Location,
Description and Name fields as entered in the Meta Data tab:
E.g. <Location>/<Description>/<Name>

When considering topic design, it is important that the topic hierarchy is carefully chosen to facilitate
searching and filtering using wildcards. In the example shown in the screenshot, the “MQTT Topic” is
Warehouse/Fan/Fan1.

The custom value that the “MQTT Topic” takes by default, using Meta Data, is not the same thing as
the “Default Topic”.

Field Map Property Description

Description description User-defined text e.g. Fan

Install Date installation_date Date the slave was installed on your network

 SmartSwarm 300 Series:

61

Location location User-defined text e.g. Warehouse/Room401

Manufacturer manufacturer User-defined text (Usually the manufacturer of the slave)

Name name User-defined text e.g. AHU Fan

Product Code product_code User-defined text e.g. Wil-Flex-450

Byte Order value_byte_order This is how Floating Point and 32-bit data is ordered when
it is transmitted by the slave within the register.
No Swap
Swap Bytes and Words
Swap Bytes only
Swap Words only

Version version User-defined text e.g. 4.1
Table 19. Meta Data tab

An MQTT Topic hierarchy can be specified by using the ‘/’ character inline in the text of the meta data
fields. This hierarchy is not limited to 3 levels of <Location>/<Description>/<Name>

E.g. the text “Warehouse/HoldingArea/Room401” can be entered into the Location field.

Click on a cell to enter edit-mode. Use the tab key to navigate between cells. If the data entered is
invalid, the cell color will change to red. Pressing the ESC key while in edit-mode will restore the original
value.

Changes are automatically saved when moving to a new tab.

9.4.3 REGISTERS

The application supports the 4 Modicon register types i.e. Coils, Discrete Inputs, Input Registers and Holding
Registers.

Register Type Address Range Modicon Address

Coil (0x) 0-65535 000001 to 065536

Discrete Input (1x) 0-65535 100001 to 165536

Input Registers (3x) 0-65535 300001 to 365536

Holding Registers (4x) 0-65535 400001 to 465536
Table 20. Register Types

 SmartSwarm 300 Series:

62

On SmartWorx Hub, for each register type, the address entered corresponds with the Modbus register
offset for that specific register type.
E.g. Holding Register address 5 corresponds to register 400006

Click on the appropriate tab to view registers.

9.4.3.1 INPUT REGISTERS AND HOLDING REGISTERS

Item Map Property Description

Address address Index from the register type base address

Bit Offset address_offset Starting position within the register, counting from the least
significant bit.

The default is 0, which is appropriate for all non-Enum Data
Types.

An Enum Data Types is used to represent a register that is
used for multiple purposes (e.g. using individual bits, or bit-
fields).

In the case of an Enum Data Type, the Bit Offset, Width, Num
Value, and String Value fields are relevant.

 SmartSwarm 300 Series:

63

Name name A description of the register function e.g. Energy Meter

The Name field is not used for any algorithmic purpose within
the Device: it will become part of the enrichment-data
published for this Register.

Alias alias An alternate name for the register e.g. Power Usage

The Alias field is not used for any algorithmic purpose within
the Device: it will become part of the enrichment-data
published for this Register.

Data Type datatype Dropdown list of data types.
See section “Data Types”.

Width length Register data width.
For 16 and 32-bit data types this cannot be changed. For other
types the width can be from 1 to 32.

For Enum types this is used in conjunction with Bit Offset.
Width specifies the bit-width (e.g. “4” specifies a bit-width of
4 bits) within the register;
Bit Offset specifies the starting position of those 4 bits within
the register.

Zero Value zero_value Zero calibration value for this register.

This is an important value in converting from the Modbus
Register Value to a context-aware Enriched Value.

The equation used to enrich the Modbus data is:

Enriched_Value = (Modbus_Register_Value

/ Scaling) + Zero_Value

See examples given below.

Max max The expected Maximum Enriched value for this register.

E.g. If we know that the register value represents temperature
with a maximum value of 100 degrees Celsius, the value
entered here would be “100”.

This Max field value is not used for any algorithmic purpose
within the Device. It will become part of the enrichment-data
published for this register.
It should be used as an indicator of what the maximum
enriched value is expected to be.

Exception to this rule: For Counter Data Type, Max is the
rollover value of the register.

 SmartSwarm 300 Series:

64

Min min The expected Minimum Enriched value for this register.

For example, if we know that the register value represents
temperature with a minimum value of 0 degrees Celsius, the
value entered here would be “0”.

This Min field value is not used for any algorithmic purpose
within the Device. It will become part of the enrichment-data
published for this register.
It should be used as an indicator of what the minimum
enriched value is expected to be.

Scaling scaling Data scaling factor to be used

This is an important value in converting from the Modbus
Register Value to a context-aware Enriched Value.

The equation used to enrich the Modbus data is:

Enriched_Value = (Modbus_Register_Value

/ Scaling) + Zero_Value

See the examples given below.

Units units The unit of data e.g. kWh, Hz, Deg. C, Deg. F

For example, if we know that the register value represents
temperature, and we want to represent the temperature in the
Celsius scale, we would enter “Deg C” here.
This Units field value is not used for any algorithmic purpose
within the Device. It will become part of the enrichment-data
published for this register.

Num Value num This field is only relevant for Enum data types.

The Num Value field enables us to specify a numeric value
that we can use to add contextualized meaning to each
relevant state of bit-field data.

E.g. A 16 bit register may be represented by an Enum Data
Type. Each bit of the register might have a unique and
significant meaning. For each bit there can be two possible
states: 0 or 1. We can create a row in the Register Table that
represents each bit in the Register (using Bit Offset and Width
fields). For each row, we can apply meaning:
Num Value = 0; Str Value = “Valve Closed”
Num Value = 1; Str Value = “Valve Open”

This Num Value field is not used for any algorithmic purpose
within the Device. It will become part of the enrichment-data
published for this register.

 SmartSwarm 300 Series:

65

Str Value val This field is only relevant for Enum data types.

The Str Value field enables us to specify a string value that we
can use to add contextualized meaning to each relevant state
of bit-field data.

E.g. A 16 bit register may be represented by an Enum Data
Type. Each bit of the register might have a unique and
significant meaning. For each bit, there can be two possible
states: 0 or 1. We can create a row in the Register Table that
represents each bit in the Register (using Bit Offset and Width
fields). For each row, we can apply meaning:
Num Value = 0; Str Value = “Valve Closed”
Num Value = 1; Str Value = “Valve Open”

This Str Value field is not used for any algorithmic purpose
within the Device. It will become part of the enrichment-data
published for this register.

Table 21. Input Register and Holding Register editable fields

9.4.3.1.1 EXAMPLE USE OF ZERO VALUE AND SCALING

Condiser an example where a Modbus slave uses a 12-bit ADC to digitize a 4-20mA loop sensor which is measuring
temperature. The register value ranges from 819 to 4095, corresponding to a temperature range of 0 to +10°C.

The enriched value will be calculated as

(Modbus Register Value / Scaling) + Zero Value

It is recommended to draw the graph of input (raw Modbus register value) and output (enriched value) in order to
calculate the Scaling and Zero Value. Note that we assume that the relationship is linear.

 SmartSwarm 300 Series:

66

From the graph, we can calculate the slope as

𝑆𝑙𝑜𝑝𝑒 =
10 − 0

4095 − 819
= 0.00305

The Scaling factor is the inverse of this. It can also be thought of as the “One in X” gradient of the graph.

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 =
1

0.00305
= 327.6

The Zero Value is where the graph intersects the Y-axis. It can also be thought of as the Enriched value that
corresponds to a Raw Modbus Register value of 0.

 SmartSwarm 300 Series:

67

𝑆𝑙𝑜𝑝𝑒 =
0 − 𝑍𝑒𝑟𝑜 𝑉𝑎𝑙𝑢𝑒

819 − 0

𝑍𝑒𝑟𝑜 𝑉𝑎𝑙𝑢𝑒 = −𝑆𝑙𝑜𝑝𝑒 𝑥 819 = −2.5

We can repeat this same example using an Enriched Value in degrees Fahrenheit instead of degrees Celsius. The
register value ranges from 819 to 4095, corresponding to a temperature range of 32 to 50F.

Now the calculations are as follows:

𝑆𝑙𝑜𝑝𝑒 =
50 − 32

4095 − 819
= 0.00549

The Scaling factor is the inverse of this. It can also be thought of as the “One in X” gradient of the graph.

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 =
1

0.00549
= 182

 SmartSwarm 300 Series:

68

The Zero Value is where the graph intersects the Y-axis. It can also be thought of as the Enriched value that
corresponds to a Raw value of 0.

𝑆𝑙𝑜𝑝𝑒 =
32 − 𝑍𝑒𝑟𝑜 𝑉𝑎𝑙𝑢𝑒

819 − 0

𝑍𝑒𝑟𝑜 𝑉𝑎𝑙𝑢𝑒 = 32 − 𝑆𝑙𝑜𝑝𝑒 𝑥 819 = +27.5

Here’s what these two examples would look like on SmartWorx Hub:

9.4.3.2 DISCRETE INPUTS AND COILS

Item Map Property Description

Address address Index from register type base address

Name name A description of the register function e.g. Pump Status

Alias alias An alternate name for the register e.g. Heating Pump 1

Str 0 Value val0 Enriched string for a value of zero e.g. OFF

Str 1 Value val1 Enriched string for a value of one e.g. ON

Table 22. Discrete Input and Coil editable fields

9.4.4 DATA TYPES

Data Type Address Bit
Offset

Name Alias Width Zero
Value

Max Min Scaling Units Num
Value

Str
Value

ENUM ✔ ✔ ✔ ✔ ✔ ✔ ✔

UINT16 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

 SmartSwarm 300 Series:

69

INT16 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

UINT32 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

INT32 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

FLOAT32 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

STRING ✔ ✔ ✔ ✔ ✔ ✔

COUNTER ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 23. Data Types and Field Values

Registers which are discovered will have no meaningful information filled in.
Some cells such as Num Value and Str Value are only applicable to ENUM data types and will have no effect if filled
in for other data types. Moving the mouse over a cell will indicate if the cell is valid for the selected data type.

9.4.4.1 ENUM
Combination of bits representing a range of distinct named values. See section “Editing Registers”.

9.4.4.2 UNT16
Unsigned 16 bit integer, range 0 - 65535 .

9.4.4.3 INT16
Signed 16 bit integer, range -32,768 to 32,767 .

9.4.4.4 UINT32
Unsigned 32 bit integer, range 0 to 4,294,967,295 .

9.4.4.5 INT32
Signed 32 bit integer, range -2,147,483,648 to 2,147,483,647 .

9.4.4.6 FLOAT32
Signed 32 bit floating point, range -3.4E+38 to +3.4E+38 .

9.4.4.7 STRING
Collection of Registers representing 8-bit ASCII characters. The width of this field should be set to the length of the
string multiplied by 8.

9.4.4.8 COUNTER
Combination of bits representing a roll-over counter. For example an 8-bit counter would range from 0 to 255.
When it reaches 255, the next increment will cause it to roll-over to 0 again. A 16-bit counter would range from 0
to 65535.

For rules purposes, the counter is assumed to always increment, never decrement. For example, for an 8-bit
counter a reading of 254 followed by a reading of 4 would be treated as an increment of 6: 254 - 255 - 0 - 1 - 2 - 3 -
4…
The max value is not forced to be the maximum value determined by the bit width of the counter. It can be less if
required. For example, if an 8-bit counter has a max value of 100, then the internal counter is assumed to rollover
at 100. This allows digital counters to be handled, such as an electricity meter or vehicle odometer.

 SmartSwarm 300 Series:

70

The nature of a counter also has implications for the type of event that can be triggered by it. See section “Events
(WHEN)”.

9.4.5 ADDING REGISTERS

To add a register click the + icon. This will create a new row with the same values as the current row. Enter the

Address and fill in the other fields as required.

9.4.6 EDITING REGISTERS

9.4.6.1 DISCRETE INPUTS AND COILS

Discrete Inputs and Coils can only have a value of zero or one. These can be enriched using the Str 0 Value and Str
1 Value columns.

9.4.6.2 INPUT REGISTERS AND HOLDING REGISTERS

By default, discovered Holding and Input registers will have a DataType of UINT16 when displayed. The user should
select the correct Data Type for each register.

9.4.6.2.1 THE ENUM DATA TYPE

“ENUM” stands for enumerated type. It means that the register can have a finite set of named values.
When entering ENUM data types, an entry must be made for each enum value. i.e. If there are 2 enums
representing ON and OFF, then 2 rows must be entered for the register.

In the example below, Register 614 is an ENUM type which uses Bit 0 to encode 2 possible states: 0 and 1, which
have enriched values of “OFF” and “ON”. Note how we use the combination of “Bit offset” and “Width” to specify
bit zero of the register.

 SmartSwarm 300 Series:

71

In the next example, Register 40 is also an ENUM type which uses the first 3 bits of the register.

● Bit 0 has 2 states: “Pump Off” and “Pump On”.
● Bit 1 has 2 states: “Normal Operation” and “Min Speed”
● Bit 2 has 2 states: “Normal Operation” and “Max Speed”.

Note how one register configured as a “bit field” in this way can hold several independent states at the same time.

Another common ENUM scenario uses the value of the whole register to encode a single state. In the above
screenshot Register 42 represents one state variable that can have multiple possible values.

The Min, Max, Units, Num Value and Str Value fields are not used for any algorithmic purpose within
the Device. The data entered for these fields will become part of the enriched-data published for the
register.
The Zero Value and Scaling fields are used to scale the raw Modbus value into an enriched value: For

 SmartSwarm 300 Series:

72

ENUM data types this could alter the intended meaning of Modbus register. Unless you’re sure, we
recommend leaving these fields in their default states (Zero Value = 0; Scaling = 1).

In the above screenshot Registers 65 and 14 are ENUM types.

Register 65 uses two 2-bit values to represent the state of two Valves.

The 2-bit width allows up to four states for the Valves: in the example shown, only three states are defined.

Register 14 uses a 2-bit width to encode 4 states to represent the current status of a control-room door.

● Register 65, Bit Offset 0, has three states: “Valve Open”, “Valve Closed”, “Valve in Transition”
● Register 65, Bit Offset 2, has three states: “Valve Open”, “Valve Closed”, “Valve in Transition”
● Register 14, Bit Offset 8, has four states: “Door Closed”, “Door Open”, “Door Opening”, “Door Closing”.

9.4.7 DELETING REGISTERS

To delete a register, Click the - icon. A confirmation dialog is displayed. Click OK to delete the register. The

register is now removed.

No changes will be made to the device until the Push to Device button has been clicked

 SmartSwarm 300 Series:

73

10. RULES AND TOPICS

10.1 INTRODUCTION

The SmartSwarm 351 converts Modbus data to MQTT.

In the process it adds data enrichment, including scaling factors and meta-data.

By default, all data is blocked and nothing is published on MQTT until you specifically allow it.

Bear in mind that even a slow serial network, running continuously, can create a lot of data. A 9600-baud network
running at 50% bus utilization generates 1.5GB of raw data every month: and this is significantly increased by the
enrichment process. If you are transporting the MQTT data over cellular you probably cannot afford to publish
everything, and it is unlikely that your cellular connection and cloud service would keep up with the sustained,
enriched-data rate.

The “Decoder” interface on SmartWorx Hub enables you to first apply enrichment for your Modbus data, and then
to apply rules for your enriched data.

If you want some specific data to be published on MQTT, you must add a filter “rule”. A rule has two parts:

● An event, which determines WHEN data will be published;
● A payload, which determines WHAT data will be published.

Enrichment is done before Rules are applied. This means that all Rules created will apply to the
enriched data.

If scaling has been applied for a register during the enrichment process, the Rules you create will apply
to the enriched and scaled data for that register.

If you have not applied enrichment for a register, the Rules you create for that register will apply to
the raw Modbus register data.

 SmartSwarm 300 Series:

74

The published Payload data will have all of the enrichment data included.

You then specify HOW you want the data to be published. For example, on what MQTT topic, with what QOS, etc.

The Rules and Topics screen is visible as a Tab in the editor for each slave. For example:

By default, only one event is displayed for each available register.

To add another event, click the ‘+’ sign on the required register. This will add a duplicate row for that register.
Edit the event details and click Save Rules.

When saving rules, an error message will be displayed if any required parameters for an event are missing.

Once rules have been saved, click Push Rules to apply the rules to the device.

The following fields are editable in the Rules and Topics tab:

Item Description

Event Select the event type from a dropdown menu

Payload Select what to publish from a dropdown menu

QOS Quality of Service

Retain Instructs the broker to retain the last published message on this topic

MQTT Topic Topic to publish on

Default Topic The default topic will always be
Swarm_ID/Device_ID/Port_ID/Slave_ID/Register_Type/Event
E.g. 0/700000/1/1/HR/SCHEDULING. This can be turned on or off

– Delete this rule

+ Add a new rule to this register
Table 24. Rules and Topics fields

 SmartSwarm 300 Series:

75

10.2 EVENTS (WHEN)

On any row in the Rules and Topics table, click the Event field to see the drop-down list of available events:

Note: Only one instance of each event type should be added to a register. Adding multiple events of the same type
will have no effect, as only the first instance of the event will take effect.

The following table summarizes the available event types:

Event Description

None The default selection. Nothing will be published.

Read Trigger when the register is observed on the bus. Use with extreme caution as this can
result in a substantial amount of MQTT data being published.

Change Trigger when the enriched register value changes from the last observed value.

High Threshold Trigger when the enriched register value goes above a threshold.

Low Threshold Trigger when the enriched register value goes below a threshold.

Delta Trigger when the enriched register value changes by a specified amount from the last
published value.

High Rate Trigger when the rate-of-change of the enriched register value increases by more than a
specified amount in a specified period.

Low Rate Trigger when the rate-of-change of the enriched register value decreases by more than a
specified amount in a specified period.

Scheduled Trigger periodically, on a user-defined interval.

Global Read As for “Read”, but applies to ANY register of this type.

Global Change As for “Change”, but applies to ANY register of this type.
Table 25. Event Types

The following table summarizes how each event type may be used with each register type:

 SmartSwarm 300 Series:

76

 Inputs,
Coils

Input Registers,
Holding Registers

Event ENUM Numeric
1
 STRING COUNTER

Read ✔ ✔ ✔ ✔ ✔

Change ✔ ✔ ✔ ✔ ✔

High Threshold ✔

Low Threshold ✔

Delta ✔ ✔

High Rate ✔ ✔

Low Rate ✔ ✔

Scheduled ✔ ✔ ✔ ✔ ✔

Global Read ✔ ✔ ✔ ✔

Global Change ✔ ✔ ✔ ✔

Table 26. Events and Data Types: cross-reference

1
 “Numeric” means any of the following data types: UINT16, INT16, UINT32, INT32, FLOAT32

Each event type is discussed in more detail in the following sections.

10.2.1 READ

Trigger a publish when a register has been read (or written) by the Modbus master.

This event is applicable to any register type and any data type: For a counter it returns the raw value of the
register, not the accumulated value.

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

Read ✔ ✔ ✔ ✔ ✔

Table 27. Read Event

1
 “Numeric” means any of the following data types: UINT16, INT16, UINT32, INT32, FLOAT32

 SmartSwarm 300 Series:

77

In SmartWorx Hub, when you select this Event type. No further configuration is required:

10.2.2 CHANGE

Trigger a publish when an enriched register value changes.

This event is applicable to any register type and any data type:

 Inputs,

Coils
Input Registers,

Holding Registers

 ENUM Numeric STRING COUNTER

Change ✔ ✔ ✔ ✔ ✔

Table 28. Change Event

 SmartSwarm 300 Series:

78

In SmartWorx Hub, when you select this Event type on an Input or a Coil, no further configuration is required.
However, if it is selected on an Input Register or a Holding Register, an additional field appears at the top of the
table:

In the “Change by” field, you may enter a percentage value. The MQTT publish will only be triggered if the
enriched register value has changed by more than this value. The default value is 0%, which means that ANY
change will constitute a trigger event.

The following example shows a register that usually has a numeric value of 100, but with occasional deviations.
The red annotations show when MQTT publishes will be triggered, assuming that a Change rule is applied, with
“Change by” = 0%:

Note that we get only 13 MQTT messages, as opposed to 68 if we had used a Read rule.

For analog data it probably does not make sense to create a Change rule with “Change by” = 0%, as process noise
will inevitably cause the least-significant bits to change all the time. This will trigger a lot of MQTT publishes, which
may lead to a large cellular bill. The “Change by” field can be used to reject noise.
Continuing the example above, if we apply a Change rule with “Change by” = 10% we can reduce the number of
MQTT messages from 13 to 4:

 SmartSwarm 300 Series:

79

It is important to remember that the change is measured with respect to the last time the register was observed on
Modbus, not to the last time it was published on MQTT.

In the diagram above, the green bars represent the ±10% change that is dynamically calculated after each new
sample is received.

An MQTT publish will be triggered only if the next sample value lies outside of the allowed range, represented by
the green bar.
For the “Change” event type, only a percentage or relative change can be specified. That means the actual change
in value required to trigger an event will vary.

 SmartSwarm 300 Series:

80

The following example shows a numeric register that ramps monotonically from 0, incrementing by 1 on each
Modbus master access. The red annotations show when MQTT publishes will be triggered, assuming that a Change
rule is applied, with “Change by” = 10%.

● If the register has not been seen on the bus before, then the first value of 0 is considered to be a change
of 100%. So the value of 0 triggers a publish.

● If the current enriched register value is 0, then any non-zero value is considered to be a change of 100%.
So the value of 1 triggers a publish.

● The next change from 1 to 2 represents a 100% change, which is greater than 10%.
● A change from 2 to 3 represents a 50% change, and so on.
● A change from 10 to 11 represents a 10% change, which is not greater than 10%. The value of 11 does not

trigger a publish.
● As the enriched register value increases further, the absolute change of 1 becomes smaller in percentage

terms. No further MQTT publishes are triggered.

For a slave waveform like this you probably want to specify an absolute change. See the Delta event type below.

10.2.3 DELTA

Trigger when the enriched register value changes from the last published value.

This event is only applicable to Input Registers and Holding Registers, not Discrete Inputs and Coils.

It is only applicable to numeric data types, and the counter data type:
It is only applicable to numeric data types, and the counter data type:

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

 SmartSwarm 300 Series:

81

Delta ✔ ✔

Table 29. Delta Event

Note: As explained in the Counter section, a counter is always increasing. A drop in value is assumed to indicate a
single roll-over event. Therefore, for an 8-bit counter (range 0 - 255), a change in value from 254 to 253 is an
increase of 255, not a decrease of 1.

Like the Change event, you can enter a “Change by” value after selecting the Delta event type on a register:

The MQTT publish will only be triggered if the enriched register value has changed by greater than or equal to this
value, compared to the last time it was published.

The following example shows a register that ramps monotonically from 0, incrementing by 1 on each Modbus
master access. The red annotations show when MQTT publishes will be triggered, assuming that a Delta rule is
applied, with “Change by” = 9.

 SmartSwarm 300 Series:

82

10.2.4 HIGH THRESHOLD

Trigger when the enriched register value increases above a fixed threshold.

This event is only applicable to Input Registers and Holding Registers, not Discrete Inputs and Coils.

It is applicable to numeric data types only. It is not applicable to a counter. A counter is a rollover data type and so
we have no record of its true accumulated value on which to base the threshold.

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

High Threshold ✔

Table 30. High Threshold Event

When you select the High Threshold event type on a register, you must enter two fields:

● The Threshold field specifies the value above which the register must increase in order to trigger an
MQTT publish.

● The Hysteresis field allows you to prevent multiple MQTT publishes due to process noise. Once the
register has crossed the Threshold value in the positive (increasing) direction, it must cross the value
[Threshold - Hysteresis] in the negative direction before it is considered to have re-crossed.

NOTE: This rule is significantly different from the previous rules discussed above, because it is STATEFUL.
For example, when the High Threshold is crossed in either direction an MQTT publish will be triggered.
But if the register remains above (or below) the threshold no further messages will be published. An
MQTT publish will occur only on state transitions.

 SmartSwarm 300 Series:

83

The following rules are STATEFUL: High Threshold, Low Threshold, High Rate, Low Rate.

The following example shows a register that follows a sinusoidal waveform. The Modbus Master is polling the
register every 200ms. Assume that a “High Threshold” rule is applied, with Threshold = 40 and Hysteresis = 5. The
red dots show samples which are above the Threshold. The red callouts show when MQTT publishes will be
triggered:

Note how only two MQTT messages are published:
● One when the value changes from below the threshold to above;
● One when the value changes from above the threshold to below (minus the hysteresis).

The default value of the Hysteresis field is 0 (zero), which means no hysteresis:

 SmartSwarm 300 Series:

84

Note how 5 MQTT publishes are caused by the multiple threshold crossings.

Using a bigger value for Hysteresis provides more noise rejection:

10.2.5 LOW THRESHOLD

Trigger when the enriched register value decreases below a fixed threshold..

This event is only applicable to Input Registers and Holding Registers, not Discrete Inputs and Coils.

It is applicable to numeric data types only. It is not applicable to a counter. A counter is a rollover data type and so
we have no record of its true accumulated value on which to base the threshold.

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

Low Threshold ✔

Table 31. Low Threshold Event

 SmartSwarm 300 Series:

85

When you select the Low Threshold event type on a register, you must enter two fields:

● The Threshold field specifies the value below which the register must decrease in order to trigger an
MQTT publish.

● The Hysteresis field allows you to prevent multiple MQTT publishes due to process noise. Once the
register has crossed the Threshold value in the negative (decreasing) direction it must cross the value
[Threshold + Hysteresis] in the positive direction before it is considered to have re-crossed.

●

NOTE: This rule is STATEFUL. For example, when the Low Threshold is crossed, in either direction, an
MQTT publish will be triggered. But if the register remains below (or above) the threshold, no further
messages will be published. An MQTT publish will occur only on state transmissions:

The following rules are STATEFUL: High Threshold, Low Threshold, High Rate, Low Rate.

The following example shows the same register as before. The red callouts show when MQTT publishes will be
triggered, assuming that a “Low Threshold” rule is applied, with Threshold = 15 and Hysteresis = 5:

 SmartSwarm 300 Series:

86

Notes:
● On start-up, if the first value is already below the threshold, that is considered a state transition. In this

case, the first value of 0 will trigger an MQTT publish.
● When the value increases above the threshold (plus the hysteresis), we publish again.
● When the value decreases below the threshold, we publish again.

10.2.6 HIGH RATE

The “High Rate” rule will trigger on “high rate of change”.
Trigger when the enriched register value has changed at a rate greater than a certain rate.

Note: A counter is always increasing. A drop in value is taken as a rollover. Therefore, for an 8 bit counter (range 0 -
255) a change in value from 254 to 253 is an increase of 255 not a decrease of 1

This event is only applicable to Input Registers and Holding Registers, not Discrete Inputs and Coils.

It is only applicable to numeric data types and the counter data type:

Note: a counter is always increasing. A drop in value is taken as a rollover. Therefore, for an 8 bit counter (range 0 -
255), a change in value from 254 to 253 is an increase of 255 and not a decrease of 1.

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

High Rate ✔

Table 32. High Rate Event

When you select the “High Rate” event type on a register, you must enter a “Change” value:

 SmartSwarm 300 Series:

87

The Change value represents the instantaneous rate of change per second. The MQTT publish will only be
triggered if the enriched register value has changed faster than this.

NOTE: This rule is STATEFUL. For example, when the Rate Threshold is crossed in either direction an
MQTT publish will be triggered. But if the rate of change remains below (or above) the threshold no
further messages will be published. An MQTT publish will only occur on state transitions:

The following rules are STATEFUL: High Threshold, Low Threshold, High Rate, Low Rate.

The following example shows a register that follows a sinusoidal waveform. The Modbus Master is polling the
register every 200ms. Assume that a “High Rate” rule is applied, with Change = 10 per second. The red dots show
samples that are above the Rate Threshold. The red callouts show when MQTT publishes will be triggered:

 SmartSwarm 300 Series:

88

In the diagram above the green triangles represent the “10 per second” rate of change against which each new
sample is compared when it is received. At the top and bottom of a sine-wave the rate of change is low, so the
trigger condition is not met.

Even though the Rate limit is specified in units per second, the system does not have to wait 1 second before
deciding whether or not to publish. Whenever two consecutive samples are received, be they separated in time by
less than or more than 1 second, the instantaneous rate of change is calculated. If the actual rate of change is
greater than the programmed threshold, the MQTT publish will be triggered.

In the following example, the Modbus Master is polling the same register at a much slower rate: once every 4
seconds:

 SmartSwarm 300 Series:

89

The second sample (actually, the first pair of samples) will trigger an MQTT publish, because
50

4
 >

10

1

After this the system will remain in the “Alarm ON” state forever, because the rate of change is always greater
than the threshold. No further MQTT messages will be published.

The “High Rate” event type is roughly equivalent to the “High Threshold” event type, but it operates on the
derivative of the waveform. However, note that there is no equivalent for Rate “Hysteresis”. This means that if the
rate of change of a register happens to coincide with the selected Rate Threshold, timing jitter and/or process
noise may lead to multiple MQTT publishes due to repeated state transitions.

10.2.7 LOW RATE

Trigger when the enriched register value has changed at a rate less than a certain rate.

Note: a counter is always increasing. A drop in value is taken as a rollover. Therefore, for an 8 bit counter (range 0 -
255) a change in value from 254 to 253 is an increase of 255 and not a decrease of 1.

This event is only applicable to Input Registers and Holding Registers, not Discrete Inputs and Coils.

It is only applicable to numeric data types, and the counter data type:

Note: a counter is always increasing. A drop in value is taken as a rollover. Therefore, for an 8 bit counter (range 0 -
255) a change in value from 254 to 253 is an increase of 255 and not a decrease of 1.

 SmartSwarm 300 Series:

90

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

Low Rate ✔

Table 33. Low Rate Event

As for “High Rate”, when you select the “Low Rate” event type on a register you must enter a “Change” value,
which represents the rate of change per second:

NOTE: This rule is STATEFUL. i.e. When the Rate Threshold is crossed in either direction, an MQTT
publish will be triggered. But if the rate of change remains below (or above) the threshold, no further
messages will be published. An MQTT publish will only occur on state transitions:

The following rules are STATEFUL: High Threshold, Low Threshold, High Rate, Low Rate.

The following example shows the same register as before, but with a “Low Rate” rule applied, with Change = 10
per second:

 SmartSwarm 300 Series:

91

As expected, we get the complement of the previous result for the “High Rate” case.

The “Low Rate” event type is roughly equivalent to the “Low Threshold” event type, but it operates on the
derivative of the waveform. However, note that there is no equivalent for Rate “Hysteresis”. This means that if the
rate of change of a register happens to coincide with the selected Rate Threshold, timing jitter and/or process
noise may lead to multiple MQTT publishes due to repeated state transitions.

10.2.8 SCHEDULED

This event type allows you to specify an interval at which the data will be published on MQTT, and the time within
that interval when the publish will take place, e.g. every hour and 17 minutes past the hour:

 SmartSwarm 300 Series:

92

10.2.9 GLOBAL READ

Trigger a publish when any register of the selected Type has been read (or written) by the Modbus master.

This event is applicable to any register type and any data type. For a counter it returns the raw value of the
register, not the accumulated value.

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

Read ✔ ✔ ✔ ✔ ✔

Table 34. Global Read Event

Otherwise, this trigger will operate as per the description in the “Read” section.

10.2.10 GLOBAL CHANGE

Trigger a publish when the value of any register of the selected Type changes.

This event is applicable to any register type and any data type: For a counter it returns the raw value of the
register, not the accumulated value.

 Inputs,
Coils

Input Registers,
Holding Registers

 ENUM Numeric STRING COUNTER

Change ✔ ✔ ✔ ✔ ✔

Table 35. Global Change Event

Note that when a global filter is enabled, it is not possible to disable that filter for individual elements.

Global filters have the potential to generate a large number of MQTT publishes and should be avoided
unless you are sure that this is what you intend.

 SmartSwarm 300 Series:

93

10.3 PAYLOADS (WHAT)

For every event type, you can decide WHAT to publish when that event happens.

Payload Description

Default Only the register that triggered the event will be published.

Slave All registers on this slave will be published.

HR All Holding registers on this slave will be published.

IR All Input registers on this slave will be published.

IS All Discrete Input registers on this slave will be published.

CS All Coils on this slave will be published.

Range Registers within a range will be published.
Table 36. Payload options

The “Default” payload can sometimes contain more than one register. In the case of a Global Read or Global
Change rule, a single Modbus transaction may read or write more than one register. Every register that meets the
Read or Change criteria will be published.

Not all payload selections are available for all event types, as the following table explains.

Event Default Slave HR IR IS CS Range

Read ✔

Change ✔

Delta ✔ ✔ ✔ ✔ ✔ ✔ ✔

High Threshold ✔ ✔ ✔ ✔ ✔ ✔ ✔

Low Threshold ✔ ✔ ✔ ✔ ✔ ✔ ✔

High Rate ✔ ✔ ✔ ✔ ✔ ✔ ✔

Low Rate ✔ ✔ ✔ ✔ ✔ ✔ ✔

Scheduled ✔ ✔ ✔ ✔ ✔ ✔ ✔

Global Read ✔

Global Change ✔

Table 37. Event / Payload matrix

A payload will only be published if there has been actual data observed on the Modbus network for
the defined payload type. In other words, the device will not publish “enrichment” only, without an
observed “num_value” (see payload examples below).

In the case of the “default” payload there will always be a publish to correspond with the event
trigger.

 SmartSwarm 300 Series:

94

10.3.1 PAYLOAD EXAMPLES

10.3.1.1 THE DEFAULT PAYLOAD

With this rule, if the enriched value of Register 1 goes above 100 the payload for register 1 will be published.

The published payload data will be in .json format.

For this HR example, the actual enriched register value within the data payload will be in

model.state.HR.0.num_value (see the published JSON schema below).

A sample of payload published from this rule might look like this:

{
 "model": {
 "state": {
 "HR": [{
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_1",
 "min": 0,
 "address_offset": 0,
 "max": 100,
 "zero_value": 0,
 "num_value": 101.000000,
 "scaling": 1,
 "alias": "Water Temperature",
 "state": "VALIDATED",
 "var_pct": 16.000000,
 "at": "2016-07-14T19:29:22.089Z",
 "address": 1,
 "units": "Deg C",
 "new_value": true,
 "new_read": true
 }]
 },
 "meta": {
 "description": "Slave_1",
 "value_byte_order": "SNo",
 "name": "Power_Meter",
 "installation_date": "14\/07\/2016",
 "location": "Test_Rack",
 "address": {
 "DEVID": "6500004",
 "PORTID": 1,
 "SLAVEID": 10,
 "SWMID": 0
 },
 "manufacturer": "NA"

 SmartSwarm 300 Series:

95

 }
 },
 "type": "ModbusSlave",
 "id": "10_HR_1_HI"
}

10.3.1.2 THE HR PAYLOAD

With this rule, if the enriched value of Register 1 goes above 100 the payload data for all Holding registers will be
published. The num_value in the payload for each of the holding-registers will be the actual value last seen by the
SmartSwarm device on the Modbus network.

If there has not been any actual data seen on Modbus for a HR register it will not appear in the payload.

The published data will be in .json format.

A sample of payload published from this rule (assuming there are 3 Holding Registers for this Slave), might look like
this:

{
 "model": {
 "state": {
 "HR": [{
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_1",
 "min": 0,
 "address_offset": 0,
 "max": 100,
 "zero_value": 0,
 "num_value": 103.000000,
 "scaling": 1,
 "alias": "Water Temperature",
 "state": "VALIDATED",
 "var_pct": 17.000000,
 "at": "2016-07-14T17:38:32.721Z",
 "address": 1,
 "units": "Deg C",
 "new_value": true,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_2",
 "min": -10,
 "address_offset": 0,
 "max": 40,
 "zero_value": 0,
 "num_value": 61.000000,
 "scaling": 1,
 "alias": "Air Temperature",

 SmartSwarm 300 Series:

96

 "state": "VALIDATED",
 "var_pct": 2.000000,
 "at": "2016-07-14T17:38:32.721Z",
 "address": 2,
 "units": "Deg C",
 "new_value": true,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
published_on": "HI\/ON",
 "name": "HR_3",
 "min": 0,
 "address_offset": 0,
 "max": 90,
 "zero_value": 0,
 "num_value": 0.000000,
 "scaling": 1,
 "alias": "Humidity",
 "state": "VALIDATED",
 "var_pct": 0,
 "at": "2016-07-14T17:38:32.721Z",
 "address": 3,
 "units": "%",
 "new_value": false,
 "new_read": true
 }]
 },
 "meta": {
 "description": "Slave_1",
 "value_byte_order": "SNo",
 "name": "Power_Meter",
 "installation_date": "14\/07\/2016",
 "location": "Test_Rack",
 "address": {
 "DEVID": "6500004",
 "PORTID": 1,
 "SLAVEID": 10,
 "SWMID": 0
 },
 "manufacturer": "NA"
 }
 },
 "type": "ModbusSlave",
 "id": "10_HR_1_HI"
}

10.3.1.3 THE SLAVE PAYLOAD

With this rule, if the enriched value of Register 1 goes above 100 all registers from this Modbus slave will be
published.

The num_value in the payload for each of the registers will be the actual value last seen by the SmartSwarm device
on the Modbus network.

 SmartSwarm 300 Series:

97

If there are no Input Registers, Discrete Inputs, or Coils defined for the slave, then there will be place-holders in the
published JSON data schema to show where the data for those register values would be, if they existed.

If there has not been any actual data seen on Modbus for a slave register it will not appear in the payload.

Here’s an example payload, where there are only holding registers defined (and observed) for the Slave:

{
 "model": {
 "state": {
 "CS": [],
"HR": [{
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_1",
 "min": 0,
 "address_offset": 0,
 "max": 100,
 "zero_value": 0,
 "num_value": 113.000000,
 "scaling": 1,
 "alias": "Water Temperature",
 "state": "VALIDATED",
 "var_pct": 31.000000,
 "at": "2016-07-14T19:36:29.127Z",
 "address": 1,
 "units": "Deg C",
 "new_value": true,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_2",
 "min": -10,
 "address_offset": 0,
 "max": 40,
 "zero_value": 0,
 "num_value": 23104.000000,
 "scaling": 1,
 "alias": "Air Temperature",
 "state": "VALIDATED",
 "var_pct": 0,
 "at": "2016-07-14T19:36:29.127Z",
 "address": 2,
 "units": "Deg C",
 "new_value": false,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_3",
 "min": 0,
 "address_offset": 0,
 "max": 90,
 "zero_value": 0,
 "num_value": 0.000000,
 "scaling": 1,
 "alias": "Humidity",
 "state": "VALIDATED",
 "var_pct": 0,
 "at": "2016-07-14T19:36:29.127Z",
 "address": 3,
 "units": "%",
 "new_value": false,
 "new_read": true

 SmartSwarm 300 Series:

98

 }],
 "IS": [],
 "IR": []
 },
 "meta": {
 "description": "Slave_1",
 "value_byte_order": "SNo",
 "name": "Power_Meter",
 "installation_date": "14\/07\/2016",
 "location": "Test_Rack",
 "address": {
 "DEVID": "6500004",
 "PORTID": 1,
 "SLAVEID": 10,
 "SWMID": 0
 },
 "manufacturer": "NA"
 }
 },
 "type": "ModbusSlave",
 "id": "10_HR_1_HI"
}

Here’s an example payload when there are Holding Registers, Coils, Discrete Inputs and Input Registers defined (or
observed) for the slave. In this example, there is 1 Coil, 3 Holding Registers, 2 Inputs, and 2 Input Registers (one of
them is an ENUM, with 3 enumerated associated values):

{
 "model": {
 "state": {
 "CS": [{
 "published_on": "HI\/OFF",
 "name": "CoilExample",
 "str_value": "OutsideBounds",
 "num_value": 0,
 "value_from": "RESPONSE",
 "alias": "This is a Coil Example",
 "state": "VALIDATED",
 "var_pct": 0,
 "new_read": false,
 "address": 1,
 "new_value": false,
 "at": "2016-07-15T15:11:00.373Z"
 }],
 "HR": [{
 "value_from": "RESPONSE",
 "published_on": "HI\/OFF",
 "name": "HR_1",
 "min": 0,
 "address_offset": 0,
 "max": 100,
 "zero_value": 0,
 "num_value": 89.000000,
 "scaling": 1,
 "alias": "Water Temperature",
 "state": "VALIDATED",
 "var_pct": 17.000000,
 "at": "2016-07-15T15:16:51.407Z",
 "address": 1,
 "units": "Deg C",
 "new_value": true,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/OFF",
 "name": "HR_2",

 SmartSwarm 300 Series:

99

 "value_from": "RESPONSE",
 "alias": "This is a Coil Example",
 "state": "VALIDATED",
 "var_pct": 0,
 "new_read": false,
 "address": 1,
 "new_value": false,
 "at": "2016-07-15T15:11:00.373Z"
 }],
 "HR": [{
 "value_from": "RESPONSE",
 "published_on": "HI\/OFF",
 "name": "HR_1",
 "min": 0,
 "address_offset": 0,
 "max": 100,
 "zero_value": 0,
 "num_value": 89.000000,
 "scaling": 1,
 "alias": "Water Temperature",
 "state": "VALIDATED",
 "var_pct": 17.000000,
 "at": "2016-07-15T15:16:51.407Z",
 "address": 1,
 "units": "Deg C",
 "new_value": true,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/OFF",
 "name": "HR_2",
 "min": -10,
 "address_offset": 0,
 "max": 40,
 "zero_value": 0,
 "num_value": 115.000000,
 "scaling": 1,
 "alias": "Air Temperature",
 "state": "VALIDATED",
 "var_pct": 8.000000,
 "at": "2016-07-15T15:16:51.407Z",
 "address": 2,
 "units": "Deg C",
 "new_value": true,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/OFF",
 "name": "HR_3",
 "min": 0,
 "address_offset": 0,
 "max": 90,
 "zero_value": 0,
 "num_value": 31147.000000,
 "scaling": 1,
 "alias": "Humidity",
 "state": "VALIDATED",
 "var_pct": 86.000000,
 "at": "2016-07-15T15:16:51.407Z",
 "address": 3,
 "units": "%",
 "new_value": true,
 "new_read": true
 }],
 "IS": [{
 "published_on": "HI\/OFF",
 "name": "Input Power Invertor",

 SmartSwarm 300 Series:

100

 "str_value": "On",
 "num_value": 1,
 "value_from": "RESPONSE",
 "alias": "IPV",
 "state": "VALIDATED",
 "var_pct": 100,
 "new_read": false,
 "address": 6,
 "new_value": false,
 "at": "2016-07-15T15:12:37.350Z"
 }, {
 "published_on": "HI\/OFF",
 "name": "Battery Status",
 "str_value": "Good",
 "num_value": 0,
 "value_from": "RESPONSE",
 "alias": "BS",
 "state": "VALIDATED",
 "var_pct": 100.000000,
 "new_read": false,
 "address": 7,
 "new_value": false,
 "at": "2016-07-15T15:12:37.350Z"
 "IR": [{
 "published_on": "HI\/OFF",
 "name": "Num Battery Inputs",
 "address_offset": 0,
 "num_value": 13,
 "value_from": "RESPONSE",
 "alias": "Batt_Inputs",
 "state": "VALIDATED",
 "var_pct": 18.000000,
 "new_read": false,
 "address": 55,
 "new_value": false,
 "at": "2016-07-15T15:14:37.395Z"
 }, {
 "published_on": "HI\/OFF",
 "name": "Num Battery Outputs",
 "address_offset": 4,
 "num_value": 2,
 "value_from": "RESPONSE",
 "alias": "Batt_Outputs",
 "state": "VALIDATED",
 "var_pct": 0,
 "new_read": false,
 "address": 55,
 "new_value": false,
 "at": "2016-07-15T15:14:37.395Z"
 }, {
 "published_on": "HI\/OFF",
 "name": "Num Indicator Outputs",
 "address_offset": 8,
 "num_value": 0,
 "value_from": "RESPONSE",
 "alias": "Indicator_Outputs",
 "state": "VALIDATED",
 "var_pct": 0,
 "new_read": false,
 "address": 55,
 "new_value": false,
 "at": "2016-07-15T15:14:37.395Z"
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/OFF",
 "name": "Operating Frequency",
 "address_offset": 0,

 SmartSwarm 300 Series:

101

 "zero_value": 0,
 "num_value": 1491.000000,
 "scaling": 1,
 "alias": "OpFreq",
 "state": "VALIDATED",
 "var_pct": 69.000000,
 "new_read": false,
 "address": 60,
 "new_value": false,
 "at": "2016-07-15T15:14:37.395Z"
 }]
 },
 "meta": {
 "description": "Slave_1",
 "value_byte_order": "SNo",
 "name": "Power_ "installation_date": "14\/07\/2016",
 "location": "Test_Rack",
 "address": {
 "DEVID": "6500004",
 "PORTID": 1,
 "SLAVEID": 10,
 "SWMID": 0
 },
 "manufacturer": "NA"
 }
 },
 "type": "ModbusSlave",
 "id": "10_HR_1_HI"
}

10.3.1.4 THE RANGE PAYLOAD

With this rule, if the value of Register 1 goes above 100 the data for the registers between address 2 and 3 will be
published.

If there has not been any actual data seen on Modbus for a register in this range it will not appear in the payload.

The num_value in the payload for each of the holding-registers in this range will be the actual value last seen by
the SmartSwarm device on the Modbus network.

{
 "model": {
 "state": {
 "HR": [{
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_2",
 "min": -10,
 "address_offset": 0,
 "max": 40,
 "zero_value": 0,

 SmartSwarm 300 Series:

102

 "num_value": 1762.000000,
 "scaling": 1,
 "alias": "Air Temperature",
 "state": "VALIDATED",
 "var_pct": 0,
 "at": "2016-07-14T19:41:04.109Z",
 "address": 2,
 "units": "Deg C",
 "new_value": false,
 "new_read": true
 }, {
 "value_from": "RESPONSE",
 "published_on": "HI\/ON",
 "name": "HR_3",
 "min": 0,
 "address_offset": 0,
Meter",
 "max": 90,
 "zero_value": 0,
 "num_value": 0.000000,
 "scaling": 1,
 "alias": "Humidity",
 "state": "VALIDATED",
 "var_pct": 0,
 "at": "2016-07-14T19:41:04.109Z",
 "address": 3,
 "units": "%",
 "new_value": false,
 "new_read": true
 }]
 },
 "meta": {
 "description": "Slave_1",
 "value_byte_order": "SNo",
 "name": "Power_Meter",
 "installation_date": "14\/07\/2016",
 "location": "Test_Rack",
 "address": {
 "DEVID": "6500004",
 "PORTID": 1,
 "SLAVEID": 10,
 "SWMID": 0
 },
 "manufacturer": "NA"
 }
 },
 "type": "ModbusSlave",
 "id": "10_HR_1_HI"
}

10.4 TOPICS (HOW)

After we have decided what data we want to publish we can choose a topic on which to publish this data. Clients
can then subscribe to this topic in order to see the data.

Two independent topic spaces can be supported simultaneously.

● The custom MQTT Topic space is completely configurable. Use topic strings that make sense for your
application-specific MQTT clients and data consumers.

● The Default Topic space is fixed. It uses a well-defined hierarchy which can be mined for data in an
application-independent way.

 SmartSwarm 300 Series:

103

For every individual rule, the custom MQTT Topic, the Default Topic, or both, may be disabled.

If you are using cellular for the uplink MQTT connection, you are probably limited by bandwidth
and/or monthly data usage. The default behavior of the SmartSwarm 351 is for every Rule to publish
on both the custom topic and the default topic. You need to profile the cost of these publishes, and
selectively enable only those that are required for your use case.

10.4.1 CUSTOM TOPIC SPACE

For every rule in the “Rules and Topics” tab, the “MQTT Topic” field is completely customizable. Any string may be
entered. A forward slash will indicate a new level in the topic hierarchy.

For any newly-created rule, the MQTT Topic is pre-filled with strings from the Meta tab for that slave, in the order:

<Location>/<Description>/<Name>

For example, given the following slave meta data:

… the MQTT Topic string will be “Test_Rack/Slave_1/Power_Meter”, as shown:

Notes:

● Any spaces in the Meta data fields will be replaced by underscores in the topic string;
● Forward slashes may be used in the Meta data fields to automatically introduce more levels in the topic

space hierarchy.

 SmartSwarm 300 Series:

104

● If the slave Meta data is changed at some point in time the MQTT Topic string will NOT be automatically
updated for any existing rules. This is to prevent problems for any MQTT clients which may have already
been configured to subscribe to the old topic string.

● The pre-filled MQTT Topic field can be overwritten by the user at any time.

For every individual rule, MQTT publishes on the custom topic can be disabled by specifying an empty string in the
“MQTT Topic” field.

10.4.2 DEFAULT TOPIC SPACE

For every individual rule, MQTT publishes on the default topic can be disabled by un-ticking the checkbox for
“Default Topic”.

The default topic string is always of the form:

<Swarm_ID>/<Device_ID>/<Port_ID>/<Slave_ID>/<RegisterType>/<Event>

For example, a typical topic string is “0/700000/1/1/HR/SCHEDULING”.

Field Description

Swarm_ID Always ‘0’ for devices which are not part of a Swarm.

Device_ID The serial number of the device, as printed on the hardware label.
If the “Device ID” in SmartWorx Hub appears as “203-01-6200799”, then the Device_ID
field is just the last 7 digits: “6200799”.

Port_ID 0 = RS-232
1 = RS-485

Slave_ID The address of the Modbus Slave which is providing the payload information.

RegisterType CS: Coil
IS: Discrete Input
IR: Input Register
HR: Holding Register

Event All Discrete Input registers on this slave will be published.
Read: “READ”
Change: “CHANGE”
Delta: “DELTA”
High Threshold: “HI”
Low Threshold: “LO”
High Rate: “RATE-HI”
Low Rate: “RATE-LO”
Scheduled: “SCHEDULING”
Global Read: “READ”
Global Change: “CHANGE”

Table 38. The Default Topic

One extra field is appended to the default topic string in certain situations:

 SmartSwarm 300 Series:

105

If the Event is one of the STATEFUL types, then a State value of “OFF” or “ON” is appended. (i.e. For events of type
High Threshold, Low Threshold, High Rate, Low Rate.)

Because the default topic string can NOT be changed by the user, you can rely on the topic space hierarchy to be
consistent across all devices, slaves, and rules. For example:

To subscribe to: Use this topic string:

All messages from device 7000000 0/7000000/#

All “alarm” activations from device 7000000 0/7000000/+/+/+/ON
Table 39. Default Topic example

10.4.2.1 PAYLOAD FORMAT FOR DEFAULT TOPICS

Publishes on the default topic space differ from publishes on the custom topic space in two important respects:
1) Publishes on the default topic space are always SERIALIZED at the register level. (i.e. If the Payload

selection is more than one register, then there will be one MQTT message published on the custom topic,
but multiple MQTT messages published on the default topic.)

2) Every publish on the default topic space is accompanied by another message containing “meta” data for
the slave. (If the publish involves multiple registers, there is still only one meta message.)

10.4.2.2 META MESSAGES

The meta message is automatically published on the topic string:
<Swarm_ID>/<Device_ID>/<Port_ID>/<Slave_ID>/meta

The payload contains the information from the “Meta” tab for that slave on SmartWorx Hub.

For example, given the following Slave information:

… the meta message will look like this:

"0/6200799/1/1/meta": {
 "address": {
 "DEVID": "6200799",
 "PORTID": 1,

 SmartSwarm 300 Series:

106

 "SLAVEID": 1,
 "SWMID": 0
 },
 "description": "Warehouse heaters",
 "installation_date": "29/03/2016",
 "location": "Test Rack",
 "manufacturer": "Carlo Gavazzi",
 "name": "EM24",

 "product_code": "EM24.DIN.AV9.3.X.IS.X",
value_byte_order": "SWord",
 "version": "1.0"
 }

 SmartSwarm 300 Series:

107

11. VERIFY YOUR DATA FLOW

In order to verify your data flow, we recommend that you verify each step below.

Step What to verify Reference

1 Verify your physical connection to the Modbus bus. Section 4.5

Appendix 3

2 Verify that your SmartSwarm device has a secure connection to
SmartWorx Hub.

A secure connection to SmartWorx Hub exists if the USR LED, on the front
panel of the SmartSwarm device, is ON (yellow).

Section 4.3 and 4.4

Section 5.1 to 5.4

Appendix 3

3 Verify that your Modbus interface is configured to the correct settings.
The settings you select must match those of the Modbus Master.

Section 7

Appendix 3

4 Verify that your MQTT interface is configured to the correct settings. The
settings you select must match those of the MQTT broker you wish to
publish to.

We recommend that you use non-secure settings until you have verified
connectivity. Then enable a fully secure connection.

(e.g. Initially, get some test-data published on a public MQTT broker,
without enabling TLS to secure the transport layer.)

Once you have verified your data flow using non-secured sample data, we
recommend that you secure your entire data flow.

Section 8

Appendix 6

5 Verify your Slave enrichment. Section 9

6 Verify that you have configured the Event Rules correctly. Data will only
be published in accordance with the Event Rules that you have enabled.

Section 10 (Events -
WHEN)

Appendix 3

7 Verify that the data you will publish is the data you intend to publish. Section 10 (Payloads -
WHAT)

Appendix 3

 SmartSwarm 300 Series:

108

8 Verify the MQTT Topic that your events will be published on. Section 10 (Topics -
HOW)

Appendix 3

Table 40. Verify your Data Flow

 SmartSwarm 300 Series:

109

12. OTHER DOCUMENTATION

Document Title Where?

Modbus Serial Line Protocol and
Implementation Guide

http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

MQTT and the NIST Cybersecurity
Framework”

http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity

SmartWorx Hub User Manual https://hub.bb-smartworx.com/Login/Help?HelpFile=bbdms_help.pdf

OpenVPN documentation https://openvpn.net/index.php/open-
source/documentation/howto.html#client

Table 41. Other Documentation

13. APPENDIX 1 - HARDWARE RATINGS

13.1 ENVIRONMENTAL

IoT Gateway SmartSwarm 300

Temperature range Operating
Storage

-40 to +75 deg.C
-40 to +85 deg.C

Cold start -35 deg. C

-40 deg. C

Data transfers via mobile network are available

immediately 
Data transfers via mobile network are available
approximately in five minutes after the start of the
device. Everything else is functional immediately.

Humidity Operating
Storage

0 to 95 % relative humidity non condensing
0 to 95 % relative humidity non condensing

Altitude Operating 2000 m / 70 kPa

Degree of protection IP42

Supply voltage 10 to 60 V DC

Consumption Idle

Average Peak 

2,5 W
4W
11 W

Dimensions 55x97x125 mm (DIN 35 mm)

Weight Approximately 400 g (depends on interface)

http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity/v1.0/mqtt-nist-cybersecurity-v1.0.html
http://docs.oasis-open.org/mqtt/mqtt-nist-cybersecurity
https://hub.bb-smartworx.com/Login/Help?HelpFile=bbdms_help.pdf
https://openvpn.net/index.php/open-source/documentation/howto.html#client
https://openvpn.net/index.php/open-source/documentation/howto.html#client

 SmartSwarm 300 Series:

110

Antenna connectors 2 x SMA – 50 Ohm

User interface 2x ETH
USB
I/O
RS-485
RS-232

Ethernet (10/100 Mbit/s)

USB 2.0  (not currently supported)
6-pin panel socket (not currently supported)
4 pin panel socket
5 pin panel socket

Table 42. Environmental

13.2 TYPE TESTS

Table 43 Type Tests

Table 44. Type Tests

13.3 CELLULAR MODULE

Phenomena Test Description Test Levels

ESD EN 61000-4-2 Enclosure contact
Enclosure air

± 6 kV (crit. A)
± 8 kV (crit. A)

RF field AM
modulated

IEC 61000-4-3 Enclosure 20 V/m (crit. A) (80 – 2700 MHz)

Fast transient EN 61000-4-4 Signal ports
Power ports
Ethernet ports

± 2 kV (crit. A)
± 2 kV (crit. A)
± 2 kV (crit. A)

Surge EN 61000-4-5 Ethernet ports
Power ports
I/O ports

± 2 kV (crit. B), shielded cable
± 0,5 kV (crit. B)
±1kV,LtoL(crit. A)
±2kV,LtoGND(crit. A)

RF conducted EN 61000-4-6 All ports 10 V/m (crit. A)
(0,15 – 80 MHz)

Radiated
emission

EN 55022 Enclosure Class B

Conducted
emission

EN 55022 DC power ports
Ethernet ports

Class B
Class B

Power frequency
magnetic field

EN 61000-4-8 Enclosure 160 A/m (crit. A)

Dry heat EN 60068-2-2 +75 ◦C, 40 % rel. humidity

Cold EN 60068-2-1 -40 ◦C

Dump heat EN 60068-2-78 95 % rel. humidity (+40 ◦C)

 SmartSwarm 300 Series:

111

LTE module for EMEA

LTE parameters Bit rate 100 Mbps (DL) / 50 Mbps (UL) 

3GPP rel. 8 standard 
Supported bandwidths: 5 MHz, 10 MHz, 20 MHz
Supported frequencies: 800 / 900 / 1800 / 2100 / 2600 MHz

HSPA+
parameters

Bit rate 21,1 Mbps (DL) / 5,76 Mbps (UL)

3GPP rel. 7 standard 

UE CAT. 1 to 6, 8, 10, 12, 14 3GPP data compression
Supported frequencies: 900 / 2100 MHz

UMTS parameters PS bit rate 384 kbps (DL) / 384 kbps (UL)
CS bit rate 64 kbps (DL) / 64 kbps (UL)

W-CDMA FDD standard 
Supported frequencies: 900 / 2100 MHz

GPRS/EDGE
parameters

Bit rate 237 kbps (DL) / 59,2 kbps (UL)
GPRS multislot class 10, CS 1 to 4
EDGE multislot class 12, CS 1 to 4, MCS 1 to 9
Supported frequencies: 900 / 1800 / 1900 MHz

Supported
GPRS/EDGE
power classes

EGSM 900: Class 4 (33 dBm) 
GSM 1800/1900: Class 1 (30 dBm)
EDGE 900: Class E2 (27 dBm)
EDGE 1800/1900: Class E2 (26 dBm)

Table 45. Cellular Module

13.4 OTHER TECHNICAL PARAMETERS

Other technical parameters

CPU power 2 DMIPS per MHz

Flash memory 256 MB

RAM 512 MB

M-RAM 128 kB

Table 46. Technical Parameters

 SmartSwarm 300 Series:

112

14. APPENDIX 2 - GENERAL SETTINGS

14.1 CONFIGURABLE ITEMS

For every SmartSwarm device, there are some general settings and options that are available to you.

14.1.1 SETTINGS

The Network settings enable you to configure the operation of the ETH ports and the Cellular interface of your
device.

By default, ETH0 has a static IP address of 192.168.1.1.

By default, ETH0 runs a DHCP server, which will serves a DHCP address to a connecting device. This means that you
should configure your desktop/laptop to take an IP address automatically when you connect it to ETH0 of the
SmartSwarm device.

There is a local web-server, for local configuration purposes, served on ETH0 (http://192.168.1.1).

 SmartSwarm 300 Series:

113

We recommend that you do not change the ETH0 default settings.

By default, ETH1 runs as a DHCP client.

By default, the cellular interface is not configured. But note that you may have previously configured the Cellular
Interface locally on your device.

Changing network settings from SmartWorx Hub can result in breaking the working secure connection
your device has to SmartWorx Hub.
Please ensure you are applying appropriate network settings to your device, or that you have a
contingency plan (e.g. local device access is available) in the event that you unintentionally cause the
secure connection to drop.

14.1.2 DHCP

The DHCP settings apply only to the DHCP server that runs on ETH0.

 SmartSwarm 300 Series:

114

At the time of writing, it is not possible to turn off the DHCP server that runs on ETH0. Please be
careful not to connect ETH0 of the device into a LAN port that is also serving DHCP addresses.

14.1.3 OPENVPN

You may configure up to 2 OpenVPN tunnels to run on your device.

This may be useful if you need the ability to reach the local-web-server on the device -- remotely, for example.

The user interface enables you to configure an OpenVPN tunnel to an OpenVPN server.

 SmartSwarm 300 Series:

115

Before you begin to use an OpenVPN service, we recommend that you are familiar with the OpenVPN
documentation, which is available here:

https://openvpn.net/index.php/open-source/documentation/howto.html#client

OpenVPN

Enable Tunnel Enable or Disable this tunnel interface.
Disabled by default.

Protocol UDP or TCP (TCP is default)

VPN Server (IP Port) The IP Address of the OpenVPN Server, and the port the
Server is listening on.
This must be entered as a single string, like in this example:
148.251.6.41 1194

Local Port The local Port the device will (optionally) use to bind to the
OpenVPN service on the server

Verbosity Enable the debug-message level you want on your Device.
The bigger the number, the more debug messages are written
into the OpenVPN message log.
We recommend that you use 0 here.

LZO Compression Enable or Disable compression on the OpenVPN client-server
connection.
If compression is enabled on the server it must also be
enabled on the device.
Enabled by default.

Client Mode Enabled or Disabled.
Enabled by default.
Must be enabled if the Tunnel is enabled.

CA Certificate The Certification Authority’s certificate, which is used to
generate the Client Certificate from the Certification Request
generated by the Private Key.

This must be the same CA certificate (or be in the chain-of-
trust) that is used by the Server.

The CA Certificate is the Server’s Public Key.

Client Certificate The Client Certificate is the certificate created by the CA for
the Client (Device), from the Certificate Request that was sent
to the CA.

The Client Certificate is the Device’s Public Key.

https://openvpn.net/index.php/open-source/documentation/howto.html#client

 SmartSwarm 300 Series:

116

Key The Private Key (for the Device) that is used to generate the
Certification Request.
The Certification Request is what you send to the Certification
Authority.

Table 47. OpenVPN fields

When OpenVPN feature is enabled, the Client Key, the Client Certificate, and the CA Certificate will be sent to the
Device.

When the OpenVPN feature is disabled, all of these items will be removed from the Device.

So how do you create your Key, how do you get your Client Certificate, and how do you know what the CA
certificate is?

You can generate your own private key (intended to be the Private Key of the Device).

Please consult “openssl” documentation, and please refer to your OpenVPN server’s documentation.

Here’s an example of how to create a private key. (There are many options that you can apply here; we’re using
one option for illustration purposes only):

$ openssl genrsa -out MyDevicePrivate.key 2048

You now have the “Key” required.

Next, you need to generate a Certificate Signing Request. Here’s an example (again, this is only one of many
possible examples):

$ openssl req -new -sha256 -key MyDevicePrivate.key -out

CertificateRequest.csr

Country Name: <your 2 letter country code>
State or Province Name: <your province name>
Locality Name: <your location name>
Organization Name: <your organization name>
Organizational Unit Name: <your team name>
Common Name: <your domain name> (e.g. "devid6500003")
email: <your email>
Challenge password: <blank, press enter>
Optional company name: <blank, press enter>

The output from this sequence is a file named “CertificateRequest.csr”.
Now, you must send this Certificate Signing Request to your Certificate Authority for signing.

The CA that signs this certificate must be the same CA, or in the chain-of-trust of the CA, that has signed the
Server’s Certificate.

You will receive back your signed certificate (this is the Client Certificate that you require), along with the server’s
CA certificate (this is the CA Certificate that you require).

 SmartSwarm 300 Series:

117

14.1.4 NTP CLIENT

You may specify up to 4 network time protocol servers for this Device.

14.2 NON-CONFIGURABLE ITEMS

14.2.1 FIREWALL

There is a built-in Firewall on your SmartSwarm device.

This firewall cannot be re-configured by the user.

The default Firewall policy is to drop all “input” and “forward” requests, and to accept all “output” requests.

The following Firewall exception rules are then applied to the policy for incoming requests:

Interface DHCP server ICMP (ping) HTTP SSH Forward to internet

ETH0 ✔ ✔ ✔ ✔

ETH1 ✔ ✔ ✔ ✔

Cellular ✔

 SmartSwarm 300 Series:

118

Tunnel* ✔ ✔ ✔

Table 48. Firewall rules

Note that some Firewall exception rules will be applied automatically, depending upon whether you have
configured OpenVPN. For example, the *Tunnel interface will only exist when you have enabled an OpenVPN
tunnel.

 SmartSwarm 300 Series:

119

15. APPENDIX 3 - DIAGNOSTICS AND TROUBLESHOOTING

There is a local web-server interface on ETH0 of the SmartSwarm device.

This interface is intended to be used for two purposes:

a) Configure the device’s outbound (WAN) connectivity (using either the Cellular interface, or ETH1).
b) Diagnosing and Troubleshooting problems, in collaboration with the Advantech B+B SmartWorx technical

support team.

15.1 THE LOCAL WEB INTERFACE

There is an embedded web-server which provides a local interface on ETH0.

By default, ETH0 of the device is configured with IP address 192.168.1.1, subnet 255.255.255.0.

ETH0 is configured as a DHCP server: This means that if you physically connect ETH0 to your laptop/desktop the
device will automatically serve an IP address of 192.168.1.x to your laptop/desktop.

The local web interface looks like this:

 SmartSwarm 300 Series:

120

There are nine Tabs: Home; Settings; Troubleshooting; Agents; Hub Client; Cellular; Logs; Debug and Modbus

15.1.1 HOME

From the Home tab, you can see some important information about your SmartSwarm device:
● Firmware Version
● Components Version
● Serial number
● U-Boot Version
● Device uptime, connected users, load average

15.1.2 SETTINGS

The Settings tab enables you to configure your connectivity ports:
● Cellular
● ETH0
● ETH1

If you intend to use the Cellular interface for your outbound connection you must enter your APN and network
credentials here.

By default, ETH0 will operate as a LAN interface only and ETH1 will expect to be served an address from a DHCP
server.

We assume that the DHCP server that serves this address will also provide a route to the internet.
If this is not the case, you may need to re-configure your ETH1 interface.

15.1.3 TROUBLESHOOTING

The Troubleshooting tab gives you the ability to see the actual internal device status of a number of key interfaces,
processes and settings.

This interface gives you a drop-down list of commands that you can trigger, so that you can gather some
potentially valuable run-time information. In the case your device is not performing as you think it should.

When you’re working with the Advantech B+B SmartWorx technical support engineer, he may ask you for some of
the details that are available from this Tab.

In most cases, you must select the command from the drop-down list, then hit the ‘Execute’ button.

This will execute the command on the device, and feedback the results to the browser window.

 SmartSwarm 300 Series:

121

 SmartSwarm 300 Series:

122

15.1.4 HUB CLIENT

Using this tab, you can change the default SmartWorx Hub Server instance that your device connects.
By default, your device will connect to hub.bb-smartworx.com using https on port 443.

If, for example, you have a hosted instance of SmartWorx Hub, you can change your devices’ settings to connect to
your hosted instance instead.

15.1.5 CELLULAR

Use the Cellular tab to get some cellular integrity diagnostics from your device.

Using this tab you can get:

● Signal Strength
● System Information
● Signal Information
● Card Status

 SmartSwarm 300 Series:

123

15.1.6 LOGS

The SmartSwarm device will keep debug message logs internally.

During the troubleshooting session it may be important to open the Logs tab, and to take a copy of the messages
from one of the debug-logs available.

To see the logs you must turn on “follow” mode and Execute.

15.1.7 MODBUS

The Modbus Tab will draw a graph of the Modbus Slaves that this Device knows about.

This is a graphical representation of the Slave Maps currently residing on this device.

Note that this representation will include any Slave devices that were known on this device, even if they are not
currently active.

 SmartSwarm 300 Series:

124

15.1.8 DEBUG AND AGENTS

It’s best to use the Debug and Agents Tabs in conjunction with each other.

In the Debug Tab you can see some static debug information and you can select which Agent(s) you wish to see
run-time information from.

 SmartSwarm 300 Series:

125

In the Agents tab you can see run-time information (output) from the enabled Application Agents.

Note that, even if an Agent has been “enabled” on the Debug Tab, it will only appear on the Agents Tab if there is
data actually being published by that Agent.

 SmartSwarm 300 Series:

126

In the screenshots shown here we have enabled the ALB002 Agent for debug purposes.

You can use the ALB002 Agent to verify that your Serial Interface is configured correctly. If you enable Debug on
Agent ALB002, and your serial interface settings are correct, you should see data streaming for ALB002 on the
Agents Tab.

The default setting for debugging each of the Agents is ‘disabled’. We recommend you leave these settings
disabled (not checked), before and after your Troubleshooting session. This is because the more debugging you
enable, the more the performance of your device will degrade.

We recommend that you only use the Debug interface, if necessary, in collaboration with the Advantech B+B
SmartWorx technical support personnel.

15.1.9 TSED

The Time Series Event Detection Agent is treated differently than the other Application Agents.
This is the agent that will detect when complex trigger-events occur: i.e. when the data-pattern detected matches
a defined Event Rule.

You cannot turn this Agent debug stream on or off.

When there are “complex” Events causing Triggers, the TSED agent will always be available. It will stream output
to the Web Server’s “Agents” tab.

The following Events are Complex Events: Delta; High Threshold; Low Threshold; High Rate; Low Rate.

 SmartSwarm 300 Series:

127

This is provided so that you can verify your data-flow and data-enrichment process. If you see data streaming
through the TSED interface you will know that your complex Events are triggering successfully, and there will be
data published to the MQTT interface.

NOTE: you will only see TSED as an available Agent when complex events are being triggered.

 SmartSwarm 300 Series:

128

16. APPENDIX 4 - SLAVE MAP FORMATS

Maps may be imported in JSON or Microsoft Excel formats. These files are available for download from SmartWorx
Hub.

16.1 EXCEL

Excel can be used to create slave maps. Download the map template file directly from SmartWorx Hub.

Most Modbus control systems allow the export of slave and register data to csv format. This can then be copied
into the template sheet.

The data from the Modbus control system must be manipulated into one of the formats expected by the
SmartWorx Hub import facility.

The template sheet follows the structure of the Slave Map page on SmartWorx Hub.

See section entitled “Editing Slaves” for more information on entry fields.

The notation in the Excel sheet corresponds to the notation on the SmartWorx Hub editor tabs like this:

Excel Sheet Tab SmartWorx Hub Tab Notes

meta Meta Meta data for this Modbus Slave.

address <none> Provides information about the Modbus Slave (e.g. the
Modbus Slave address), and information about the
SmartSwarm device (device id, port id, swarm id).

CS Coils (0x) The Modbus Coils for this Slave

IR Input Registers (3x) The Modbus Input Registers for this Slave

HR Holding Registers (4x) The Modbus Holding Registers for this Slave

IS Inputs (1x) The Modbus Inputs for this Slave
Table 49. Excel Sheet tabs

Example of the Address Tab:

 SmartSwarm 300 Series:

129

Item Description

DEVID Serial number of the SmartSwarm 351 device which can be found on the device label

PORTID 0 when interface is RS-232
1 when interface is RS-485

SLAVEID The number of the slave (1 - 247)

SWMID This is always 0

Table 50. Excel sheet, Address tab

Example of the Meta Tab:

Example of the HR (Holding Registers) Tab:

Example of the IR (Input Registers) Tab:

 SmartSwarm 300 Series:

130

Example of the CS (Coils) Tab:

Example of the IS (Discrete Inputs) Tab:

After completing the sheet, save the sheet with an appropriate filename (e.g. map-2.xlsx).

This file can now be imported into SmartWorx Hub by clicking the Load Maps link.

 SmartSwarm 300 Series:

131

16.2 JSON

The alternative import-map format is JSON format.
This section will show some examples of appropriate JSON formatted input maps.

The JSON map below is a minimal example of a slave map with no registers defined.

{

 "id": "",

 "model": {

 "meta": {

 "address": {

 "DEVID": "7000000",

 "PORTID": 1,

 "SLAVEID": 1,

 "SWMID": 0

 },

 "description": "",

 "installation_date": "",

 "location": "",

 "manufacturer": "",

 "name": "",

 "product_code": "",

 "value_byte_order": "SNo",

 "version": ""

 },

 "state": {

 "CS": [],

 "HR": [],

 "IR": [],

 "IS": []

 }

 },

 "type": "ModbusSlave"

}

To add a Holding register to the map insert the following under the HR section. To add another register, repeat the
section separated by a comma.

"HR": [

 {

 "address": "500",

 "address_offset": "0",

 "name": "Motor Frequency",

 "datatype": "UINT16",

 "length": "16",

 "zero_value": "0",

 "scaling": "10",

 "units": "Hz",

 "state": "VALIDATED"

 SmartSwarm 300 Series:

132

 }

]

To add an Input register to the map insert the following under the IR section. To add another register, repeat the
section separated by a comma.
"IR": [

 {

 "address": "3",

 "name": "Power Consumption",

 "datatype": "UINT16",

 "length": "16",

 "zero_value": "0",

 "scaling": "1000",

 "units": "kWh",

 "state": "VALIDATED"

 }

]

To add a Coil to the map insert the following under the CS section. To add another register, repeat the section
separated by a comma.
"CS": [

 {

 "address": 24,

 "name": "Coil Example",

 "alias": "JN1",

 "state": "VALIDATED",

 "available_values": [

 "OFF",

 "ON"

]

 }

]

To add a Discrete Input to the map insert the following under the IS section. To add another register repeat the
section separated by a comma.
"IS": [

 {

 "address": 30,

 "name": "Input Example",

 "alias": "IP1",

 "state": "VALIDATED",

 "available_values": [

 "NO",

 "YES"

]

 }

]

ENUMs are a special case for Holding and Input registers and are added to the map as follows

{

 SmartSwarm 300 Series:

133

 "address": 40,

 "address_offset": 2,

 "name": "Pump Command",

 "alias": "",

 "datatype": {

 "enum_type": {

 "num": [

 0,

 1

],

 "val": [

 "Normal Operation",

 "Max Speed"

]

 }

 },

 "length": 1,

 "zero_value": null,

 "max": null,

 "min": null,

 "scaling": null,

 "units": "",

 "state": "VALIDATED"

 }

It is recommended that JSON maps be validated using an online JSON formatter. It is difficult to find errors,
especially when the maps contain a large number of registers.

http://jsonlint.com/

17. APPENDIX 5 - BACKGROUND INFORMATION

17.1 MODBUS BACKGROUND

Modbus is a serial communications protocol published by Modicon in 1979 for use with its programmable logic
controllers (PLCs). The Modbus standard is currently managed by The Modbus Organization. The standard is
available for free download from http://modbus.org/specs.php. Download the “Modbus Serial Line Protocol and
Implementation Guide” (Modbus_over_serial_line_V1_02.pdf) and the “MODBUS Protocol Specification”
(Modbus_Application_Protocol_V1_1b3.pdf)

Modbus is a simple request-response protocol, in which a master device sends a message asking for a particular
slave device to return a number of registers, each containing information collected or derived from the devices and
sensors connected to the slave.

It can be implemented over Serial (Modbus ASCII / Modbus RTU) or Ethernet (Modbus TCP/IP). "Modbus RTU"
(Remote Terminal Unit) uses raw binary encoding, whilst "Modbus ASCII" uses ASCII characters (7 bits). The
SmartSwarm 351 currently supports eavesdropping on serial Modbus RTU networks only.

http://jsonlint.com/
http://modbus.org/specs.php

 SmartSwarm 300 Series:

134

There are a number of ways to specify the addresses of registers in the slave device. SmartSwarm 351 uses the
convention of a base register type (Coil, Status, Input or Holding) and an offset, starting from zero, within that
register type. Hence, a register defined within SmartSwarm 351 as ‘Holding Register 5) might appear in other
manufacturers data as register 40,006, or 400,006.

SmartSwarm 351 decodes information exchanged using the following Modbus commands:

Function Code Description

01 Read Coil Status

02 Read Input Status

03 Read Holding registers

04 Read Input registers

05 Force Single Coil*

06 Preset Single register*

15 Force multiple Coils*

16 Preset multiple registers*

22 Mask Write 4X register*

23 Read/Write 4X registers*

Table 51. Supported Modbus commands

 SmartSwarm 300 Series:

135

* For output command types, the unit interprets these as inputs to the IoT enrichment process. It does not
support output of data from the IoT system.

The following types of data recovered in Modbus registers can be interpreted and decoded by SmartSwarm 351:

Data Type

Boolean

Multi-bit Encoded Boolean (e.g. 2 bits provide 4 separate states for one point)

16 bit Packed Boolean (i.e. 16 discrete Booleans held in a single 16 bit register)

16 bit Integer (signed/ unsigned)

16 bit Counter

32 bit Integer (signed/unsigned) (single 32 bit or 2x16 bit registers)

32 bit Counter (single 32 bit or 2x 16 bit registers)

32 bit Float (single 32 bit or 2x 16 bit registers)

32 bit Packed Boolean (single 32 bit or 2x 16 bit registers)

Multi-register text

Table 52. Supported Data Types

SmartSwarm also supports big and little endian formats with both byte swap and, in the case of 32 bit values being
transmitted in two consecutive 16 bit registers, register swap capabilities.

 SmartSwarm 300 Series:

136

17.2 MQTT BACKGROUND

MQTT (Message Queuing Telemetry Transport) is a transport protocol originally developed in 2001 by IBM and
Arcom specifically to address the need for reliable, pushed data delivery for M2M systems over unreliable
networks. It has subsequently been released as open source, ratified by OASIS as an open standard for IoT

protocols, and most recently has been standardized as ISO/IEC 20922 It is a relatively simple solution designed to

facilitate the efficient and scalable transfer of data from multiple (potentially different) devices and provide the
information to several diverse applications, while providing 24/7 reliability.

MQTT communications are based upon a publish/subscribe methodology. Data sources ‘publish‘ data payloads on
a particular data topic. Data consumers ‘subscribe‘ to topics of interest and receive all packets published on that
topic in near real-time. Devices and applications can be both publishers of, and subscribers to, data topics. MQTT is
a very lightweight protocol and is therefore very useful in applications where processor resources, memory or
communications bandwidth are limited.

The publish/subscribe communication model

MQTT uses an intermediate middleware server to keep track of all of the subscriptions in use from connected
devices. When it receives a message the server (also referred to as a ‘broker‘) analyses the ‘topic’ information
contained in the message, and simply forwards the message to any and all applications with a matching topic
subscription. While the above diagram shows a transaction from a single source to a single subscriber application,
it should be realized that multiple subscribers can access the same topics concurrently, enabling one-to-many
communication models. It should also be remembered that any device can be both a publisher of and a subscriber
to data topics, enabling bidirectional communications.

Topic Naming
The topic naming mechanism within MQTT uses a hierarchical subject format and can contain any of the
characters found in the Unicode character set. (e.g. company/city/building/room{data payload}). Topic (and
subtopic) names may be selected on an individual project basis to suit the needs of the application, but can be
extended and modified at any time as the application evolves. Much of the power of MQTT comes from the ability
to include wildcards within the subscription definition, either for single or multiple levels within the topic name
hierarchy.

 SmartSwarm 300 Series:

137

● A '#' character represents a complete sub-tree of the hierarchy and thus must be the last character in a
subscription topic string, such as SENSOR/#. This will match any topic starting with SENSOR/, such as
SENSOR/1/TEMP and SENSOR/2/HUMIDITY.

● A '+' character represents a single level of the hierarchy and is used between delimiters. For example,
SENSOR/+/TEMP will match SENSOR/1/TEMP and SENSOR/2/TEMP.

With a carefully designed topic space it becomes possible to implement very powerful searching, filtering and
combination of data simply by manipulation of the wildcards used within subscriptions.

There are a few rules to remember when designing a topic space schema:

• Topic names are case-sensitive. For example, "CITY", “City“ and "city" are all recognized as different
topic names.

• Topic names can include spaces, which are treated just like any other character. “building A“ and
“building B“ are both valid constructs representing different entities.

• While it is not recommended, a topic level may contain a null string. For example,
"company//building" is a three level topic name whose middle level is empty.

• It is recommended that topic names do not include the null character (Unicode \x0000).
• There is no effective limit to length of the overall topic name string. (But it should be remembered

that the topic is transmitted and so overly long topics may result in high data charges if using, for
example, cellular communications).

• There is no limit to the levels of depth (number of slash-separated strings) in a topic tree.
• There is no limit to the length of any particular level name in the tree (but again, this will impact data

usage).
• There may be any number of "root" nodes (that is, any number of topic trees).

Topic Description

MyCo/Galway/building A/Warehouse Data relating to the warehouse in building A located in
Galway for my company

MyCo/Galway/+/Warehouse Data for warehouse facilities in all MyCo buildings in Galway

MyCo/Galway/building A/+ Data from all rooms in building A operated by MyCo in
Galway

MyCo/Galway/# All data from all buildings operated by MyCo located in
Galway

MyCo/# All data from all MyCo buildings

Table 53. Examples for subscribing to different topics in a hierarchical name space

As can be seen from the above table, a well-designed topic space will segregate data into subject trees which
simplify the gathering of data in the cloud.

System Efficiency and Reliability
MQTT was conceived for use in 24/7, mission critical applications. As such, MQTT includes concepts such as
‘Quality of Service’, which allow users to control how reliably messages are received by subscribers. Fire & forget,
deliver at least once, or deliver once and once only, each with different levels of handshake within the underlying
messaging system.

Also included is a ‘last will & testament’ message. This is a special category of message which, when published, is
not immediately forwarded to all subscribers. Instead, it is held by the middleware server on behalf of the
publishing device, and is republished should the originating unit disappear from the network in an unexpected

 SmartSwarm 300 Series:

138

manner. This allows applications to understand the difference between a unit which is not publishing data because
nothing has happened, and one which is not publishing data because it has failed – a critical requirement for push
based messaging systems.

MQTT Summary
MQTT is a widely adopted, lightweight open protocol which provides a transport layer in IoT architectures. Using
Publish & Subscribe methodology, it decouples the users of data from the producers of that data. This allows
extremely flexible and scalable data exchange architectures systems to be constructed, which use semantic
principles to move the users’ focus away from how to move the data between systems, and towards how the
available data may be combined to produce business benefit.

 SmartSwarm 300 Series:

139

18. APPENDIX 6 – DASHBOARDS

Having enriched our network and added rules and topics to publish the data we are interested in, we now need a
way to display this data. There are several ways to visualize the published data.

● Use an MQTT client such as MQTT-Spy
● Browser extension such as MQTTLens
● MQTT Treeview

All of these work by subscribing to the MQTT Server and topic.

We can also visualize the published data using dashboards such as Freeboard or Node-RED UI

Please note that Advantech B+B SmartWorx does not offer Dashboarding software: This section is for example
purposes only.

18.1 NODE-RED

Using Node-RED, a dashboard can be quickly created to display your MQTT data.

In this example we will set up two rules publishing to two different topics:

This will result in an MQTT payload in the following format
{"id":"Oranmore/Pump/P1/SP","model":{"meta":{"address":{"DEVID":"70000000","P

ORTID":1,"SLAVEID":5,"SWMID":"0"},"description":"Pump","installation_date":"2

9/03/2016","location":"Oranmore","manufacturer":"","name":"P1","product_code"

:"","value_byte_order":"SNo","version":""},"state":{"HR":[{"address":5,"alias

":"","at":"2016-06-

11T21:45:55.183Z","name":"Speed","new_read":true,"new_value":true,"num_value"

:300,"published_on":"READ","state":"VALIDATED","value_from":"RESPONSE"}]}},"t

ype":"ModbusSlave"}

● Add an MQTT node and a Debug node to the Node-RED flow and connect the 2 nodes

● Configure the MQTT node by entering the MQTT broker IP Address and the topic we want to subscribe to.

In this example, the topic is Oranmore/Pump/P1.

https://github.com/kamilfb/mqtt-spy/wiki/Downloads
https://chrome.google.com/webstore/detail/mqttlens/hemojaaeigabkbcookmlgmdigohjobjm
http://52.18.86.15:8090/
https://freeboard.io/
http://nodered.org/

 SmartSwarm 300 Series:

140

● Once you have configured the MQTT node, click Deploy. Check that the MQTT payload is being received

by clicking on the debug node. The output will be printed in the debug tab.

● Add the following nodes and connect as per diagram below

Topics is a switch node which gives multiple outputs based on rules. Add two rules as per the diagram below and
click OK. In this example two different topics are being published, so we add an equal rule for each topic. This
means that if Rule 1 is matched the payload will be output on output 1. Matches for Rule 2 will be output on
output 2.

 SmartSwarm 300 Series:

141

SP and PC are JSON nodes which transform the input into a JSON object.

 SmartSwarm 300 Series:

142

Transform is a Template node which allows us to select the payload property as an input to another node. In this
case, num_value is the payload property that we want. The template will depend on the Register type and, in the
case of multiple registers, the index of the register within the register array. In this case, the desired register is HR
and it is the register at index 0.

 SmartSwarm 300 Series:

143

rpm is a Gauge node on which we will display the Oranmore/Pump/P1/SP topic.

Click the pencil icon to create a new tab called Example. This will be the name of the menu on our page which we
will click to view the dashboard. Fill in the other fields as per the diagram below and click Ok.

Field Description

Tab Menu under which the control will be displayed

Name Title of the control on the page

Group Controls can be grouped on the page in a vertical row

Order The order the control is displayed in the vertical row

Template This will always be {{value}} which is the input value from the connected node

Min This is the minimum value specified during enrichment for the register

Max This is the maximum value specified during enrichment for the register
Table 54. Node Red fields for Gauge node

 SmartSwarm 300 Series:

144

Power is a chart node on which we will display the Oranmore/Pump/P1/PC topic. Fill in the other fields as per the
diagram below and click Ok. In this case we choose the Example Tab, so it is available under the same menu as the
gauge control.

Field Description

Tab Menu under which the control will be displayed

Name Title of the control on the page

Group Controls can be grouped on the page in a vertical row

Order The order the control is displayed in the vertical row

Old After Period of time after which oldest data will be removed from the chart

No Data Message to be displayed when no data has been received

Interpolate Type of graph to be displayed
Table 55. Node Red fields for Chart node

 SmartSwarm 300 Series:

145

As the data changes it will automatically update the controls on the page.

All the nodes are now configured and connected, and are deployed by clicking Deploy. The message Successfully
deployed will be displayed. Open a new tab in the browser and add the node-RED server address/ui to the address
bar. The dashboard should now be displayed.

